Private dairy companies, multinationals and co-operatives will have a need to increase milk drying capacities to meet the increasing domestic demand. Such expansion will also offer potential for substantial business growth through international exports.

Spray drying plants are at the heart of the ‘factory’ which dries the liquid milk to milk powder. To ensure the safety of personnel and protection of valuable assets, equipment with sufficient built-in safety protection is required. A growing awareness about sustainability and protection of the environment also requires systems be designed for efficient ongoing operation.

There are a number of major safety issues to be addressed in modern spray drying plants and each plant needs to be specifically designed for its particular purpose and conditions. The supplier, customer and local authorities need to work together to evaluate and ensure all safety requirements are met to protect personnel, equipment and the environment.

Risk of organic powder dust explosion
An organic powder may explode if there is an ignition source (oxygen and a spark) within the plant. Each organic product needs to be tested and its explosive properties ascertained.

The system needs to be designed to resist a given pressure and provide an adequate relief area or suppress an explosion by injecting an inert substance. Suppression may be advantageous on fluid beds, powder ducts and cyclones.

Many dairy whiteners and baby foods contain vegetable oil. The vegetable oils are volatile and it is important that the feed material is well homogenised before the drying process takes place.

Safety equipment recommended on milk spray dryer
The following safety equipment is required to protect a plant against

If you are planning to invest in the future of your dairy or food plant, do it today with tomorrow’s technology. As a leading global supplier of the dairy industry, SPX Flow offers a comprehensive selection of flexible and cost effective solutions and unparalleled process knowledge. www.spxflow.com
serious damage in the event of sudden pressure or temperature rises:

Pressure Rupture Discs
These are designed to burst whenever the pressure inside a component exceeds a certain value and are manufactured in accordance with Standard VDI 2263 and EN 14491.

A rupture disc consists of:
- Bursting membrane
- Support frame with flanges
- Built on electric wires for indicating when rupture takes place.

The rupture discs are installed at the following positions:
- Drying chamber cylinder. Chamber design: 0.6 bar
- Bag filters.

Vent Ducts
These are used to vent any pressure waves away from the relief panels to the atmosphere. Constructed of stainless steel, these ducts are straight and, where necessary, equipped with weather protection.

The free area for pressure relief and pressure shock resistance of components is calculated following the EN 14.491 Norm for powders belonging to St. 1 dust class (Kst =200 bar m/s and Pmax. 9.0 bar).

Fire Fighting System
Fire fighting systems are provided in the form of nozzles built into plant equipment which spray water into the plant in the event of temperature rising beyond a given limit. A separate temperature sensing system will automatically open the valve for the water when the temperature reaches a critical value. The system is hardwired and connected via a PLC (Programmable Logic Controller).

Water spray nozzles are installed in the drying chamber, bag filters and external fluid bed.

CO Detection System
This monitors the CO level in the inlet and the outlet air and consists of a gas analyser, PLC system, hard-wired power supply, back-up battery, sensor at the main air inlet and sensors after the bag filters. It measures CO from 0-10 ppm.

Suppression System
In the event of a critical rise in pressure, this system injects fire suppression material into the external fluid bed in the duct between the EFB and cyclone. It incorporates a total of three suppression bottles installed on the plant, each of which contain fire extinguishing material at a high pressure. A set of pressure rise and infrared detectors is used to activate the detonator at each cylinder, whereby material will immediately be injected into the plant.
New directives from ATEX, Europe region

Safety considerations for spray dryers where there is a potential for an explosion have developed. Instead of just classifying a whole operation as a particular zone the design now looks separately at different parts of the plant and areas inside the spray dryer to assess risks and safety requirements. Ongoing new directives from ATEX and the Machine Directive continue to push up standards and improve safety for personnel.

The Anhydro product range offers the very latest in spray and fluid bed drying technology. They cover small scale and large scale dairy & food applications. They come with particular expertise for the drying of products in the dairy industry including milk powders, milk protein concentrates (MPC), whey protein concentrates (WPC), caseinates, probiotic powders whole milk powder with high free fat content, baby formula, heat classified milk powders and yogurt powders. The ranges include Triple A three stage dryer, conical spray dryers, tall form dryers, spray bed dryers and fluid bed dryers.

Key No. 87531