Nettco S-Series Mixer
SANITARY STAINLESS STEEL - PORTABLE/FIXED MOUNT MIXERS
Introducing a new economical Portable and Fixed Mount Mixer System configured to meet your sanitary needs

MEETS 3A AND EC 1935:2004 STANDARDS FOR THE FOOD INDUSTRY

The Nettco S-Series sanitary mixer is available in a wide range of mixing and mounting configurations utilizing a unique modular assembly design. With one mixer it is possible to configure a clamp-on, open tank, or sealed mixer design. This mixer can be quickly converted from one mounting arrangement to another. Modifying the mounting configuration can be accomplished in less than two minutes.

- Highest quality at a competitive price
- For new and existing tank sizes: 0.1 - 20 m³ (25 - 5,000 U.S. gal.)
- Designed for Diary, Beverage, Oil, Prepared Foods and more
- Wide range of impellers and mounting options

UNIQUE MODULAR CONCEPT FEATURES:

- Sanitary, all stainless steel design
 - 304 SS housing
 - Washdown (IP55), inverter ready motor
 - Proven planetary gearing – robust and reliable
 - Food grade lubricant
 - Unique, innovative modular design
 - Reverse-taper shaft attachment for added safety
 - Stainless Steel Motor, 0.37 - 2.2 Kw (1/2 - 3 HP)
 - Optional air motor available
- Fully standardized product
- Direct and gear options for this global use mixer provides full range of shaft speeds (RPM)
 - 1450, 290, and 240 (50 Hz)
 - 1750, 350, and 280 (60 Hz)
- Shaft lengths up to 2100 mm (84”)
- Simple, compact design, 3A and EC 1935:2004 clean design available
- Economical
- Impellers from world’s mixing technology leader
 - Multiple style impellers available
 - Hydrofoil, PBT and FP 100 (Marine Props)
MODULAR DESIGN FEATURES:

Clamp Module (P):
- Bolted onto base module
- Clamps to vessel or stand
- 0° to 20° horizontal mounting
- 0° to 90° vertical adjustment
Adjustable mounting - controls vessel contents swirl for improved mixing

Fixed-Mount Open Tank Module (Q):
Open Tank Flange Module
- Attaches to base module
Use on open tanks where a seal is not required
- Vertical on center for baffled tanks
- Vertical offset for unbaflled tanks
- Can be angular mounted

Bung Adaptor
Allows for mixing in drums by fitting securely into the opening of the lid without the need for clamps or support brackets
- Attaches to base module
- For use on standard drum with a 2" NPT bung
- Stainless Steel construction to prevent corrosion

Fixed-Mount Closed Tank Lip Seal Module (L):
Closed Tank Sealed Module
- Attaches to base module
For closed tanks with seal requirements
- ANSI or DIN Flange Mount Lip Seal
- Food grade lip seal good for 0.3 BAR (5 PSI) (allowable tank pressure)

Sanitary Flange Lip Seal:
Clamps to sanitary tank flanges for a simple, clean connection when a low pressure sealing device is required.
- Attaches to base module
- 3", 4" and 6" Sanitary Flange designs available
- Food grade lip seal good for 0.3 BAR (5 PSI) (allowable tank pressure)
- Stainless Steel construction to prevent corrosion

Fixed-Mount Closed Tank Mechanical Seal Module (S):
Closed Tank Sealed Module
- Attaches to base module
For closed tanks with seal requirements
- ANSI or DIN Flange Mount
- Single dry-running mechanical seal good for 5 BAR (75 PSI) (allowable tank pressure)

Sanitary Flange Mechanical Seal Assembly:
Clamps to sanitary flanges for a simple, clean connection when a mechanical seal is required.
- Attaches to base module
- 3", 4" and 6" Sanitary Flange designs available
- Single dry-running mechanical seal good for 5 BAR (75 PSI) (allowable tank pressure)
- Stainless Steel construction to prevent corrosion
MODULAR MIXING SYSTEM:

- Base Module
 - 0° Clamp Module
 - 20° Clamp Module
 - Flange Module
 - Lip Seal Module
 - Mechanical Seal Module
 - Bung Adaptor
 - Sanitary Flange
 - Mechanical Seal
 - Sanitary Flange
 - Lip Seal
 - Base with 20° Clamp
 - Base with Flange Module
 - Base with Lip Seal Module
 - Base with Mechanical Seal Module
 - Base with Bung Adaptor
 - Base with Sanitary Flange
 - Mechanical Seal
 - Base with Sanitary Flange
 - Lip Seal
MIXER “BLEND TIME SELECTION TABLE”
60 HZ SELECTIONS

TANK VOLUME/U.S. GALLONS

<table>
<thead>
<tr>
<th>VISCOSITY/cP or mPa·s</th>
<th>1</th>
<th>100</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2500</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td><25</td>
<td>MS1_1 (1)</td>
<td>1</td>
<td>3.6</td>
<td>FP</td>
<td>MS1_1 (1)</td>
<td>1</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>3.6</td>
<td>FP</td>
<td></td>
<td></td>
<td>3.3</td>
<td>FP</td>
<td></td>
</tr>
<tr>
<td><50</td>
<td>MS1_1 (1)</td>
<td>1</td>
<td>3.6</td>
<td>FP</td>
<td>MS1_1 (2)</td>
<td>1</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>3.6</td>
<td>FP</td>
<td></td>
<td></td>
<td>3.8</td>
<td>FP</td>
<td></td>
</tr>
<tr>
<td><100</td>
<td>MS1_1 (2)</td>
<td>1</td>
<td>3.6</td>
<td>FP</td>
<td>MS5_1 (1)</td>
<td>1</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td>3.8</td>
<td>H</td>
<td></td>
<td></td>
<td>11.2</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td><200</td>
<td>MS1_1 (3)</td>
<td>1</td>
<td>3.6</td>
<td>FP</td>
<td>MS5_1 (2)</td>
<td>1</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td>3.8</td>
<td>H</td>
<td></td>
<td></td>
<td>11.8</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td><500</td>
<td>MS5_1 (3)</td>
<td>1</td>
<td>11.2</td>
<td>H</td>
<td>MS6_1 (3)</td>
<td>2</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td>11.2</td>
<td>H</td>
<td></td>
<td></td>
<td>11.6</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td><1000</td>
<td>MS5_1 (4)</td>
<td>1</td>
<td>11.2</td>
<td>H</td>
<td>MS6_1 (4)</td>
<td>2</td>
<td>12.8</td>
</tr>
<tr>
<td></td>
<td>11.8</td>
<td>H</td>
<td></td>
<td></td>
<td>12.8</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td><2000</td>
<td>MS5_1 (5)</td>
<td>1</td>
<td>11.2</td>
<td>H</td>
<td>MS6_1 (5)</td>
<td>2</td>
<td>13.6</td>
</tr>
<tr>
<td></td>
<td>11.8</td>
<td>H</td>
<td></td>
<td></td>
<td>13.8</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td><3000</td>
<td>MS5_1 (6)</td>
<td>2</td>
<td>12.8</td>
<td>H</td>
<td>MS6_1 (6)</td>
<td>2</td>
<td>14.5</td>
</tr>
<tr>
<td></td>
<td>13.8</td>
<td>H</td>
<td></td>
<td></td>
<td>14.5</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td><5000</td>
<td>MS5_1 (7)</td>
<td>2</td>
<td>12.8</td>
<td>H</td>
<td>MS6_1 (7)</td>
<td>2</td>
<td>15.1</td>
</tr>
<tr>
<td></td>
<td>13.8</td>
<td>H</td>
<td></td>
<td></td>
<td>15.1</td>
<td>H</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **Series:** Nettco MS
- **Drive Ratio:** 1, 5, 6, S*, 8**, 9**, 10**
- **Mounting:** P, Q, L
- **Motor Code:** 1, 2, 3, 4, 5, 6
- **HP/kW:** (0.5/0.37), (0.75/.055), (1.0/0.75), (1.5/1.1), (2/1.5), (3/2.2), (0.5/.37), (0.75-2/.55-1.5), (3/2.2)

Chart Reference:

<table>
<thead>
<tr>
<th>Model Design</th>
<th>Blend Time (min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Impeller</td>
</tr>
<tr>
<td>FP = FP-100, H = Hydrofoil</td>
<td>Example: Mi1Q2</td>
</tr>
</tbody>
</table>

- **Tank height to diameter ratio 0.8 - 1.2**
- **Liquids with Newtonian viscosity characteristics**
- **S.G. difference of liquids <0.1**
- **Use for mild blending applications**
- **Maximum density 1.10 g/cm³**
- **Maximum viscosity ratio - 10:1 (>250cP)**
- **Mixer in operation during filling and emptying**
Mixer "Blend Time Selection Table"

50 Hz Selections

<table>
<thead>
<tr>
<th>Viscosity/cP or mPa-s</th>
<th>1</th>
<th>100</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2500</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td><100</td>
<td>MS1_1 (1)</td>
<td>MS1_1 (1)</td>
<td>MS1_1 (1)</td>
<td>MS1_1 (1)</td>
<td>MS1_1 (1)</td>
<td>MS1_1 (1)</td>
<td>MS5_1 (2)</td>
</tr>
<tr>
<td><250</td>
<td>MS1_1 (2)</td>
<td>MS1_1 (2)</td>
<td>MS1_1 (2)</td>
<td>MS1_1 (2)</td>
<td>MS5_1 (3)</td>
<td>MS5_1 (3)</td>
<td>MS5_1 (3)</td>
</tr>
<tr>
<td><500</td>
<td>MS1_1 (2)</td>
<td>MS5_1 (1)</td>
<td>MS5_1 (1)</td>
<td>MS5_1 (1)</td>
<td>MS5_1 (2)</td>
<td>MS5_1 (2)</td>
<td>MS5_1 (2)</td>
</tr>
<tr>
<td><1000</td>
<td>MS1_1 (4)</td>
<td>MS5_1 (2)</td>
<td>MS5_1 (2)</td>
<td>MS5_1 (2)</td>
<td>MS5_1 (2)</td>
<td>MS5_1 (2)</td>
<td>MS5_1 (2)</td>
</tr>
<tr>
<td><1500</td>
<td>MS1_1 (5)</td>
<td>MS5_1 (3)</td>
<td>MS5_1 (3)</td>
<td>MS5_1 (3)</td>
<td>MS5_1 (3)</td>
<td>MS5_1 (3)</td>
<td>MS5_1 (3)</td>
</tr>
<tr>
<td><2000</td>
<td>MS1_1 (7)</td>
<td>MS5_1 (3)</td>
<td>MS5_1 (3)</td>
<td>MS5_1 (3)</td>
<td>MS5_1 (3)</td>
<td>MS5_1 (3)</td>
<td>MS5_1 (3)</td>
</tr>
<tr>
<td><2500</td>
<td>MS5_1 (3)</td>
<td>MS5_1 (5)</td>
<td>MS5_1 (5)</td>
<td>MS5_1 (5)</td>
<td>MS5_2 (5)</td>
<td>MS5_2 (5)</td>
<td>MS5_2 (5)</td>
</tr>
<tr>
<td><3750</td>
<td>MS5_1 (4)</td>
<td>MS5_1 (6)</td>
<td>MS5_1 (6)</td>
<td>MS5_1 (6)</td>
<td>MS5_1 (6)</td>
<td>MS5_1 (6)</td>
<td>MS5_1 (6)</td>
</tr>
<tr>
<td><5000</td>
<td>MS5_1 (5)</td>
<td>MS5_1 (9)</td>
<td>MS5_1 (9)</td>
<td>MS5_2 (13)</td>
<td>MS5_3 (14)</td>
<td>MS5_4 (26)</td>
<td>MS5_4 (26)</td>
</tr>
<tr>
<td><7500</td>
<td>MS5_1 (6)</td>
<td>MS5_1 (14)</td>
<td>MS5_1 (14)</td>
<td>MS5_2 (17)</td>
<td>MS5_3 (23)</td>
<td>MS5_4 (37)</td>
<td>MS5_4 (37)</td>
</tr>
<tr>
<td><10000</td>
<td>MS5_1 (8)</td>
<td>MS5_1 (17)</td>
<td>MS5_2 (14)</td>
<td>MS5_3 (18)</td>
<td>MS5_4 (24)</td>
<td>MS5_5 (37)</td>
<td>MS5_5 (37)</td>
</tr>
<tr>
<td><12500</td>
<td>MS5_1 (11)</td>
<td>MS5_2 (21)</td>
<td>MS5_3 (20)</td>
<td>MS5_4 (28)</td>
<td>MS5_4 (32)</td>
<td>MS5_4 (32)</td>
<td>MS5_4 (32)</td>
</tr>
<tr>
<td><15000</td>
<td>MS5_1 (12)</td>
<td>MS5_2 (21)</td>
<td>MS5_3 (20)</td>
<td>MS5_4 (28)</td>
<td>MS5_4 (32)</td>
<td>MS5_4 (32)</td>
<td>MS5_4 (32)</td>
</tr>
<tr>
<td><20000</td>
<td>MS5_1 (16)</td>
<td>MS5_2 (27)</td>
<td>MS5_3 (23)</td>
<td>MS5_4 (33)</td>
<td>MS5_4 (33)</td>
<td>MS5_4 (33)</td>
<td>MS5_4 (33)</td>
</tr>
</tbody>
</table>

Chart Reference:

Model Design

<table>
<thead>
<tr>
<th>Blend Time (min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Impeller</td>
</tr>
<tr>
<td>FP = FP-100, H = Hydrofoil</td>
</tr>
</tbody>
</table>
Multiple Impeller Styles:

- **PBT Impeller:**
 For low-to-medium viscosity flow controlled applications. Although superseded by the Hydrofoil, the PBT still has a specific role in applications where a degree of fluid shear is beneficial to the overall process result.

- **FP 100 Impeller (Marine Prop):**
 Recommended for applications requiring moderate pumping action and powder-wetting capabilities.

- **Hydrofoil Impeller:**
 For low viscosity flow controlled applications. Combines performance and high flow efficiency not found in other axial flow impellers.

Gear Drive Mixer Repair Kit:
- Service kits available for rapid replacement of routine service items.

SPX FLOW, Inc. - Global locations

USA
13320 Ballantyne Corporate Place
Charlotte, NC 28277
United States of America
+1 704 752 4400

CHINA
2F, Treasury Centre
No. 1568 Huashan Road
Shanghai 200052, China
P: +86 (21) 22085889

UK
Ocean House,
Towers Business Park
Didsbury, Manchester
M20 2LY, UK
P: +44 161 249 1170

SPX FLOW, LLC - Lightnin & Plenty Mixers
135 Mt. Read Blvd.
Rochester, NY 14611
P: (888) 649-2378 (MIX-BEST), US and Canada) or +1 (585) 436-5550
F: (585) 436-5589
E: lightnin@spxflow.com • www.spxflow.com/lightnin

SPX FLOW, Inc. reserves the right to incorporate our latest design and material changes without notice or obligation.

Design features, materials of construction, and dimensional data, as described in this bulletin, are provided for your information only and should not be relied upon unless confirmed in writing. Please contact your local sales representative for product availability in your region. For more information, visit www.spxflow.com.

The green ‘’ and ‘’ are trademarks of SPX FLOW, Inc.