
FreFlow

Горизонтальный центробежный насос

Редакция: FRE/RU (2502) 9.7

Декларация о соответствии требованиям ЕС

(Директива 2006/42/EC, приложение II-A)

Производитель

SPX Flow Technology Assen B.V. Dr. A.F. Philipsweg 51 9403 AD Assen The Netherlands (Нидерланды)

настоящим заявляет, что все насосы семейств продукции CombiFlex(U)(B), CombiPrime H, CombiMag, CombiMagBloc, CombiPro(L)(M)(V), CombiPrime V, CombiSump, CombiTherm, CombiWell, FRE, FRES, FREF, FREM, KGE(L), KGEF, MCH(W)(S), MCHZ(W)(S), MCV(S), поставляемые без привода или в сборе с приводом, соответствуют требованиям Директивы 2006/42/EC (с последними изменениями) и, где применимо, следующим директивам и стандартам:

- Директива EC 2014/35/EU «Электрическое оборудование для применения в определенных пределах напряжения»,
- Директива EC 2014/30/EU «Электромагнитная совместимость»,
- стандарты EN-ISO 12100, EN 809,
- стандарт EN 60204-1, если применимо.

Насосы, на которые распространяется данная декларация, могут быть введены в эксплуатацию только после установки в предписанном производителем порядке и, в зависимости от обстоятельств, после того, как система в целом, частью которой являются насосы, будет приведена в соответствие с основными требованиями охраны труда и техники безопасности.

EC/RU (2410) 6.4

Декларация о соответствии компонентов требованиям **EC**

(Директива 2006/42/EC, приложение II-B)

Производитель

SPX Flow Technology Assen B.V. Dr. A.F. Philipsweg 51 9403 AD Assen The Netherlands (Нидерланды)

настоящим заявляет, что частично укомплектованный насос (задний съемный модуль), входящий в семейства продукции CombiFlex(U)(B), CombiPrime H, CombiMag, CombiMagBloc, CombiTherm, CombiPro(L)(M)(V), CombiPrime V, FRE, FRES, FREF, FREM, KGE(L), KGEF соответствует требованиям Директивы 2006/42/EC, а также следующим стандартам:

EN-ISO 12100, EN 809,

и что этот частично укомплектованный насос предназначен для встраивания в определенную насосную установку и может быть запущен в эксплуатацию только после того, как механизм, частью которого является данный насос, будет соответствовать требованиям всех Директив и это соответствие будет задекларировано.

Ответственность за выпуск деклараций полностью возлагается на производителя

Ассен, 1 октября, 2024

H. Hoving,

Директор по операциям.

2 EC/RU (2410) 6.4

Инструкция по эксплуатации

Вся техническая и технологическая информация, содержащаяся в настоящей инструкции по эксплуатации, а также предоставленные нами рисунки/чертежи, остаются собственностью компании. Данную информацию запрещено исользовать (в целях, отличных от эксплуатации данного насоса), копировать, дублировать, предоставлять в расоряжение или доводить до сведения третьих лиц без нашего предварительного письменного согласия.

Компания SPX FLOW является ведущим многоотраслевым производителем в мире. Выпуск узкоспециализированной, нетиповой продукции, а также инновационные технологии, используемые компанией, помогают удовлетворять растущий мировой спрос на электроэнергию и обработку пищевых продуктов и напитков, особенно на развивающихся рынках.

SPX Flow Technology Assen B.V. Dr. A. F. Philipsweg 51 9403 AD Assen The Netherlands (Нидерланды)

Тел.: +31 (0)592 376767 Факс: +31 (0)592 376760

Copyright © 2022 SPX FLOW, Inc

INT/RU (2301) 1.5

INT/RU (2301) 1.5

Содержание

1.2 Безопасность 9 1.3 Гарантия 10 1.4 Инспектирование поставленных позиций 10 1.5 Инструкции по транспортировке и хранению 10 1.5.1 Вес 10 1.5.2 Использование поддонов 11 1.5.3 Подъем 11 1.6 Заказ запасных частей 12 2 Общие положения 12 2.1 Описание насоса 13 2.2 Код типа 13 2.3 Серийный номер 14 2.4 Группа насос-двигатель 14 2.5 Группа подшипников 14 2.6 Применение 14 2.7 Принцип действия самозаполнения 15 2.8 Варианты исполнения 16 2.9.1 Конструкция 16 2.9.2 Конструкция кронштейна для подшипника 16 2.9.3 Механическое уплотнение 16 2.10 Материалы 17 2.11 Соединения 17 2.12 Сфера при	1	Введение	9
1.3 Гарантия 10 1.4 Инспектирование поставленных позиций 10 1.5 Инструкции по транспортировке и хранению 10 1.5.1 Вес 10 1.5.2 Использование поддонов 11 1.5.3 Подъем 11 1.5.4 Хранение 12 6 Заказ запасных частей 12 2 Общие положения 13 2.1 Описание насоса 13 2.2 Код типа 13 2.3 Серийный номер 14 2.4 Группа насос-двигатель 14 2.5 Группа подшипников 14 2.6 Принцип действия самозаполнения 15 2.8 Варианты исполнения 16 2.9.1 Корнтуркция 16 2.9.2 Конструкция 16 2.9.1 Корнтуркция 16 2.9.2 Конструкция 16 2.9.3 Механическое уплотнение 16 2.10 Материалы 17 2.11 Соединения 17	1.1	Вводные замечания	9
1.4 Инспектирование поставленных позиций 10 1.5 Инструкции по транспортировке и хранению 10 1.5.1 Вес 10 1.5.2 Использование поддонов 11 1.5.3 Подъем 11 1.5.4 Хранение 12 1.6 Заказ запасных частей 12 2 Общие положения 13 2.1 Описание насоса 13 2.2 Код типа 13 2.3 Серийный номер 14 2.4 Группа насос-двигатель 14 2.5 Группа подшипников 14 2.6 Применение 14 2.7 Применение 14 2.8 Варианты исполнения 15 2.9 Конструкция 16 2.9.1 Корпус насоса и крыльчатка 16 2.9.2 Конструкция кронштейна для подшипника 16 2.9.3 Механическое уплотнение 17 2.11 Соединения 17 2.12 Сфера применения 17 2.13 Исполь		Безопасность	9
1.5 Инструкции по транспортировке и хранению 10 1.5.1 Вес 10 1.5.2 Использование поддонов 11 1.5.3 Подъем 11 1.5.4 Хранение 12 1.6 Заказ запасных частей 12 2 Общие положения 13 2.1 Описание насоса 13 2.2 Код типа 13 2.3 Серийный номер 14 2.4 Группа насос-двигатель 14 2.5 Группа подшипников 14 2.6 Применение 14 2.7 Принцип действия самозаполнения 15 2.8 Варианты исполнения 16 2.9.1 Корпус насоса и крыльчатка 16 2.9.1 Корпус насоса и крыльчатка 16 2.9.2 Конструкция кронштейна для подшипника 16 2.9.3 Механическое уплотнение 17 2.11 Соединения 17 2.12 Сфера применение 17 2.13 Использование в других целях 17		·	10
1.5.1 Вес 10 1.5.2 Использование поддонов 11 1.5.3 Подъем 12 1.6 Заказ запасных частей 12 2 Общие положения 13 2.1 Описание насоса 13 2.2 Код типа 13 2.3 Серийный номер 14 2.4 Группа насос-двигатель 14 2.5 Группа подшипников 14 2.6 Применение 14 2.7 Применения 15 2.8 Варианты исполнения 16 2.9 Конструкция 16 2.9.1 Корпус насоса и крыльчатка 16 2.9.2 Конструкция кронштейна для подшипника 16 2.9.3 Механическое уплотнение 17 2.10 Материалы 17 2.11 Соединения 17 2.12 Сфера применения 17 2.13 Использование в других целях 17 2.14 Утилизация 18 3. Монтаж 19			
1.5.2 Использование поддонов 11 1.5.3 Подъем 11 1.5.4 Хранение 12 1.6 Заказ запасных частей 12 2 Общие положения 13 2.1 Описание насоса 13 2.2 Код типа 13 2.3 Серийный номер 14 2.4 Группа насос-двигатель 14 2.5 Группа подшипников 14 2.6 Применение 14 2.7 Принцип действия самозаполнения 15 2.8 Варианты исполнения 16 2.9.1 Конструкция 16 2.9.1 Конструкция конштейна для подшипника 16 2.9.3 Механическое уплотнение 16 2.9.3 Механическое уплотнение 16 2.10 Материалы 17 2.11 Соединения 17 2.12 Сфера применения 17 2.13 Использование в других целях 17 2.14 Утипизация 18 3.2 Консервация			
1.5.3 Подъем 11 1.5.4 Хранение 12 1.6 Заказ запасных частей 12 2 Общие положения 13 2.1 Описание насоса 13 2.2 Код типа 13 2.3 Серийный номер 14 2.4 Группа насос-двигатель 14 2.5 Группа подшипников 14 2.6 Применение 14 2.7 Принцип действия самозаполнения 15 2.8 Варианты исполнения 16 2.9.1 Корпус насоса и крыльчатка 16 2.9.2 Конструкция кронштейна для подшипника 16 2.9.3 Механическое уплотнение 16 2.9.3 Механическое уплотнение 16 2.10 Материалы 17 2.11 Соединения 17 2.12 Сфера применения 17 2.13 Использование в других целях 17 2.14 Утилизация 18 3.2 Консервация 19 3.3 Условия эксплуат			
1.5.4 Хранение 12 1.6 Заказ запасных частей 12 2 Общие положения 13 2.1 Описание насоса 13 2.2 Код типа 13 2.3 Серийный номер 14 2.4 Группа насос-двигатель 14 2.5 Группа подшипников 14 2.6 Применение 14 2.7 Принцип действия самозаполнения 15 2.8 Варианты исполнения 16 2.9 Конструкция 16 2.9.1 Корпус насоса и крыльчатка 16 2.9.2 Конструкция кронштейна для подшипника 16 2.9.3 Механическое уплотнение 16 2.10 Материалы 17 2.11 Соединения 17 2.12 Сфера применения 17 2.13 Использование в других целях 17 2.14 Утилизация 18 3.1 Безопасность 19 3.2 Консервация 19 3.3 Условия эксплуатации			
1.6 Заказ запасных частей 12 2 Общие положения 13 2.1 Описание насоса 13 2.2 Код типа 13 2.3 Серийный номер 14 2.4 Группа насос-двигатель 14 2.5 Группа подшипников 14 2.6 Применение 14 2.7 Принцип действия самозаполнения 15 2.8 Варианты исполнения 16 2.9.1 Конструкция 16 2.9.2 Конструкция кронштейна для подшипника 16 2.9.2 Конструкция кронштейна для подшипника 16 2.9.3 Механическое уплотнение 16 2.10 Материалы 17 2.11 Соединения 17 2.12 Сфера применения 17 2.13 Использование в других целях 17 2.14 Утилизация 18 3.1 Безопасность 19 3.2 Консервация 19 3.3 Условия эксплуатации 19 3.4.1 М			
2Общие положения132.1Описание насоса132.2Код типа132.3Серийный номер142.4Группа насос-двигатель142.5Группа подшипников142.6Применение142.7Принцип действия самозаполнения152.8Варианты исполнения162.9Конструкция162.9.1Корпус насоса и крыльчатка162.9.2Конструкция кронштейна для подшипника162.9.3Механическое уплотнение162.10Материалы172.11Соединения172.12Сфера применения172.13Использование в других целях172.14Утилизация183Монтаж193.1Безопасность193.2Консервация193.3Условия эксплуатации193.4Крепление203.4.1Монтаж насосного агрегата20			
2.1 Описание насоса 13 2.2 Код типа 13 2.3 Серийный номер 14 2.4 Группа насос-двигатель 14 2.5 Группа подшипников 14 2.6 Применение 14 2.7 Принцип действия самозаполнения 15 2.8 Варианты исполнения 16 2.9 Конструкция 16 2.9.1 Корпус насоса и крыльчатка 16 2.9.2 Конструкция кронштейна для подшипника 16 2.9.3 Механическое уплотнение 16 2.10 Материалы 17 2.11 Софединения 17 2.12 Сфера применения 17 2.13 Использование в других целях 17 2.14 Утилизация 18 3 Монтаж 19 3.1 Безопасность 19 3.2 Консервация 19 3.3 Условия эксплуатации 19 3.4.1 Монтаж насосного агрегата 20		заказ запасных частей	
2.2 Код типа 13 2.3 Серийный номер 14 2.4 Группа насос-двигатель 14 2.5 Группа подшипников 14 2.6 Применение 14 2.7 Принцип действия самозаполнения 15 2.8 Варианты исполнения 16 2.9 Конструкция 16 2.9.1 Корпус насоса и крыльчатка 16 2.9.2 Конструкция кронштейна для подшипника 16 2.9.3 Механическое уплотнение 16 2.9.3 Механическое уплотнение 16 2.10 Материалы 17 2.11 Соединения 17 2.12 Сфера применения 17 2.13 Использование в других целях 17 2.14 Утилизация 18 3 Монтаж 19 3.1 Безопасность 19 3.2 Консервация 19 3.3 Условия эксплуатации 19 3.4.1 Монтаж насосного агрегата 20	2	Общие положения	13
2.3 Серийный номер 14 2.4 Группа насос-двигатель 14 2.5 Группа подшипников 14 2.6 Применение 14 2.7 Принцип действия самозаполнения 15 2.8 Варианты исполнения 16 2.9 Конструкция 16 2.9.1 Корпус насоса и крыльчатка 16 2.9.2 Конструкция кронштейна для подшипника 16 2.9.3 Механическое уплотнение 16 2.10 Материалы 17 2.11 Соединения 17 2.12 Сфера применения 17 2.13 Использование в других целях 17 2.14 Утилизация 18 3 Монтаж 19 3.1 Безопасность 19 3.2 Консервация 19 3.3 Условия эксплуатации 19 3.4 Крепление 20 3.4.1 Монтаж насосного агрегата 20		Описание насоса	13
2.4 Группа насос-двигатель 14 2.5 Группа подшипников 14 2.6 Применение 14 2.7 Принцип действия самозаполнения 15 2.8 Варианты исполнения 16 2.9 Конструкция 16 2.9.1 Корпус насоса и крыльчатка 16 2.9.2 Конструкция кронштейна для подшипника 16 2.9.3 Механическое уплотнение 16 2.10 Материалы 17 2.11 Соединения 17 2.12 Сфера применения 17 2.13 Использование в других целях 17 2.14 Утилизация 18 3 Монтаж 19 3.1 Безопасность 19 3.2 Консервация 19 3.3 Условия эксплуатации 19 3.4 Крепление 20 3.4.1 Монтаж насосного агрегата 20		• •	13
2.5Группа подшипников142.6Применение142.7Принцип действия самозаполнения152.8Варианты исполнения162.9Конструкция162.9.1Корпус насоса и крыльчатка162.9.2Конструкция кронштейна для подшипника162.9.3Механическое уплотнение162.10Материалы172.11Соединения172.12Сфера применения172.13Использование в других целях172.14Утилизация183Монтаж193.1Безопасность193.2Консервация193.3Условия эксплуатации193.4Крепление203.4.1Монтаж насосного агрегата20			14
2.6Применение142.7Принцип действия самозаполнения152.8Варианты исполнения162.9Конструкция162.9.1Корпус насоса и крыльчатка162.9.2Конструкция кронштейна для подшипника162.9.3Механическое уплотнение162.10Материалы172.11Соединения172.12Сфера применения172.13Использование в других целях172.14Утилизация183Монтаж193.1Безопасность193.2Консервация193.3Условия эксплуатации193.4Крепление203.4.1Монтаж насосного агрегата20		Группа насос-двигатель	
2.7Принцип действия самозаполнения152.8Варианты исполнения162.9Конструкция162.9.1Корпус насоса и крыльчатка162.9.2Конструкция кронштейна для подшипника162.9.3Механическое уплотнение162.10Материалы172.11Соединения172.12Сфера применения172.13Использование в других целях172.14Утилизация183Монтаж193.1Безопасность193.2Консервация193.3Условия эксплуатации193.4Крепление203.4.1Монтаж насосного агрегата20		• •	
2.8Варианты исполнения162.9Конструкция162.9.1Корпус насоса и крыльчатка162.9.2Конструкция кронштейна для подшипника162.9.3Механическое уплотнение162.10Материалы172.11Соединения172.12Сфера применения172.13Использование в других целях172.14Утилизация183Монтаж193.1Безопасность193.2Консервация193.3Условия эксплуатации193.4Крепление203.4.1Монтаж насосного агрегата20		·	
2.9Конструкция162.9.1Корпус насоса и крыльчатка162.9.2Конструкция кронштейна для подшипника162.9.3Механическое уплотнение162.10Материалы172.11Соединения172.12Сфера применения172.13Использование в других целях172.14Утилизация183Монтаж193.1Безопасность193.2Консервация193.3Условия эксплуатации193.4Крепление203.4.1Монтаж насосного агрегата20			
2.9.1Корпус насоса и крыльчатка162.9.2Конструкция кронштейна для подшипника162.9.3Механическое уплотнение162.10Материалы172.11Соединения172.12Сфера применения172.13Использование в других целях172.14Утилизация183Монтаж193.1Безопасность193.2Консервация193.3Условия эксплуатации193.4Крепление203.4.1Монтаж насосного агрегата20		·	
2.9.2 Конструкция кронштейна для подшипника 16 2.9.3 Механическое уплотнение 16 2.10 Материалы 17 2.11 Соединения 17 2.12 Сфера применения 17 2.13 Использование в других целях 17 2.14 Утилизация 18 3 Монтаж 19 3.1 Безопасность 19 3.2 Консервация 19 3.3 Условия эксплуатации 19 3.4 Крепление 20 3.4.1 Монтаж насосного агрегата 20		• •	
2.9.3 Механическое уплотнение 16 2.10 Материалы 17 2.11 Соединения 17 2.12 Сфера применения 17 2.13 Использование в других целях 17 2.14 Утилизация 18 3 Монтаж 19 3.1 Безопасность 19 3.2 Консервация 19 3.3 Условия эксплуатации 19 3.4 Крепление 20 3.4.1 Монтаж насосного агрегата 20			
2.10 Материалы 17 2.11 Соединения 17 2.12 Сфера применения 17 2.13 Использование в других целях 17 2.14 Утилизация 18 3 Монтаж 19 3.1 Безопасность 19 3.2 Консервация 19 3.3 Условия эксплуатации 19 3.4 Крепление 20 3.4.1 Монтаж насосного агрегата 20			
2.11 Соединения 17 2.12 Сфера применения 17 2.13 Использование в других целях 17 2.14 Утилизация 18 3 Монтаж 19 3.1 Безопасность 19 3.2 Консервация 19 3.3 Условия эксплуатации 19 3.4 Крепление 20 3.4.1 Монтаж насосного агрегата 20		•	
2.12 Сфера применения 17 2.13 Использование в других целях 17 2.14 Утилизация 18 3 Монтаж 19 3.1 Безопасность 19 3.2 Консервация 19 3.3 Условия эксплуатации 19 3.4 Крепление 20 3.4.1 Монтаж насосного агрегата 20			
2.13 Использование в других целях 17 2.14 Утилизация 18 3 Монтаж 19 3.1 Безопасность 19 3.2 Консервация 19 3.3 Условия эксплуатации 19 3.4 Крепление 20 3.4.1 Монтаж насосного агрегата 20			
2.14 Утилизация 18 3 Монтаж 19 3.1 Безопасность 19 3.2 Консервация 19 3.3 Условия эксплуатации 19 3.4 Крепление 20 3.4.1 Монтаж насосного агрегата 20			
3Монтаж193.1Безопасность193.2Консервация193.3Условия эксплуатации193.4Крепление203.4.1Монтаж насосного агрегата20		· ·	18
3.1 Безопасность 19 3.2 Консервация 19 3.3 Условия эксплуатации 19 3.4 Крепление 20 3.4.1 Монтаж насосного агрегата 20	3		19
3.2 Консервация 19 3.3 Условия эксплуатации 19 3.4 Крепление 20 3.4.1 Монтаж насосного агрегата 20		Fe20E2CHOCTI	
3.3 Условия эксплуатации 19 3.4 Крепление 20 3.4.1 Монтаж насосного агрегата 20			
3.4 Крепление 20 3.4.1 Монтаж насосного агрегата 20		·	
3.4.1 Монтаж насосного агрегата 20			
•		·	
3.4.2 COODKA HACOCHOFO AFDEFATA 20	3.4.2	Сборка насосного агрегата	20
· · · · · · · · · · · · · · · · · · ·		·	20
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '			21

FRE/RU (2502) 9.7 5

3.5 3.6 3.7 3.8 3.9 3.9.1 3.9.2	Установка насосов с установленным на фланце электродвигателе Подключение магистральных трубопроводов Трубопроводы Подключение электродвигателя Двигатель внутреннего сгорания Безопасность Направление вращения	21 21 22 23 23 23 23 23
4	Ввод в эксплуатацию	25
4.1 4.2 4.3 4.4 4.5 4.6 4.7	Осмотр насоса Осмотр двигателя Масляная камера Проверка направления вращения Запуск Эксплуатация насоса Шум	25 25 25 25 26 26 26
5	Обслуживание	27
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	Ежедневное обслуживание Двигатель внутреннего сгорания Механическое уплотнение Двойное механическое уплотнение Влияние окружающей среды Шум Мотор Неисправности	27 27 27 28 28 28 28 28
6	Устранение неисправностей	29
7	Разборка и сборка	31
7.1 7.2 7.3	Меры предосторожности Специальные инструменты Слив	31 31 31
7.3.1 7.4 7.5 7.5.1	Слив жидкости Варианты конструкции Система обратного извлечения Разборка экрана	31 31 32 32
7.5.2 7.5.3 7.5.4	Разборка устройства обратного извлечения Сборка устройства обратного извлечения Сборка экрана	32 32 33
7.6 7.6.1	Замена крыльчатки и компенсационного кольца Измерение зазора между крыльчаткой и износной пластиной, F подшипников 1	36
7.6.2 7.6.3	Измерение зазора между крыльчаткой и износной пластиной, с группы подшипников	стальные 37 38
7.6.4 7.6.5	Разборка крыльчатки, кронштейн для подшипника 1 Сборка крыльчатки, кронштейн для подшипника 1 Разборка крыльчатки, прочие кронштейны для подшипников	38 38
7.6.6 7.6.7 7.6.8	Сборка крыльчатки, прочие кронштейны для подшипников Снятие износной пластины Установка износной пластины	38 38 39
7.6.9 7.6.10	Разборка компенсационного кольца Сборка компенсационного кольца	39 40
7.7 7.7.1 7.7.2	Механическое уплотнение Инструкции по монтажу механического уплотнения Разборка механического уплотнения MG12	41 41 41

6 FRE/RU (2502) 9.7

7.7.3 7.7.4 7.7.5	Сборка механического уплотнения MG12 Разборка механического уплотнения M7N Сборка механического уплотнения M7N	41 42 42
7.7.6	·	43
	Разборка двойного механического уплотнения MD1	
7.7.7	Сборка двойного механического уплотнения MD1	43
7.8	Подшипник	45
7.8.1	Инструкции по сборке и разборке подшипников	45
7.8.2	Разборка подшипников FRE - кронштейн для подшипника 1	45
7.8.3	Сборка подшипников FRE - кронштейн для подшипника 1	46
7.8.4	Разборка подшипников FRE - кронштейн для подшипника 2	46
7.8.5	Сборка подшипников FRE - кронштейн для подшипника 2	46
7.8.6	Разборка подшипников FRE - кронштейн для подшипника 3	47
7.8.7	Сборка подшипников FRE - кронштейн для подшипника 3	47
7.8.8	Разборка подшипников FRE 80-210 и 100-250	48
7.8.9	Сборка подшипников FRE 80-210 и 100-250	48
7.8.10	Разборка подшипников FRE 150-290b и 150-290	49
7.8.11	Сборка подшипников 150-290b и 150-290	50
7.9	FRES	51
7.9.1	Сборка двигателя	51
7.9.1	_	51
	Регулировка крыльчатки	
7.10	FREF	52
7.10.1	Сборка двигателя	52
7.11	FREM	52
7.11.1	Сборка двигателя	52
7.11.2	Регулировка крыльчатки	52
8 Pa	змеры	53
8.1	FRE - группы подшипников 1, 2 и 3	53
8.2	FRE - группа подшипников 4	55
8.3	FRE с соединениями по ISO 7005 PN20	56
8.4	FRE - насосный агрегат A6	59
8.5	FRE - насосный агрегат A6, с соединениями по ISO 7005 PN20	64
8.6	FRES	69
8.7	FRES с соединениями по ISO 7005 PN20	73
8.8	FREM	77
8.9	FREF	79
0.9	TINLI	
9 3a	пасные части	81
9.1	Заказ запасных частей	81
9.1.1	Бланк заказа	81
9.1.2	Рекомендуемые запасные части	81
9.2	Hacoc FRE - группа подшипника 1	82
9.2.1	Чертеж в разрезе FRE - группа подшипника 1	82
9.2.2	Перечень деталей FRE - группа подшипника 1	83
9.3	Насос FRE - группа подшипника 2	84
9.3.1	Чертеж в разрезе FRE - группа подшипника 2	84
9.3.2	Перечень деталей FRE - группа подшипника 2	85
9.4	Насос FRE - группа подшипника 3	86
9.4.1	Чертеж в разрезе FRE - группа подшипника 3	86
9.4.1	· · · · · · · · · · · · · · · · · · ·	
	Перечень деталей FRE - группа подшипника 3 Детали насосов FRE 80-210 и 100-250	87 88
9.5 9.5.1	DETAUM BACOCOR ERE OUEZ 10 M 100EZOU	
451		
	Чертеж в разрезе FRE 80-210 и 100-250	88
9.5.2	Чертеж в разрезе FRE 80-210 и 100-250 Перечень деталей FRE 80-210 и 100-250	88 89
	Чертеж в разрезе FRE 80-210 и 100-250	88

FRE/RU (2502) 9.7 7

9.6.2	Перечень деталей FRE 150-290b и 150-290	91
9.7	Детали насоса FRES	92
9.7.1	Чертеж в разрезе FRES	92
9.7.2	Перечень деталей FRES	93
9.8	Детали насоса FREF	95
9.8.1	Чертеж в разрезе FREF	95
9.8.2	Перечень деталей FREF	96
9.9	Детали насоса FREM	97
9.9.1	Чертеж в разрезе FREM	97
9.9.2	Перечень деталей FREM	98
9.10	Детали - Механическое уплотнение MQ1	99
9.10.1	Чертежи в разрезе - Механическое уплотнение MQ1	99
9.10.2	Перечень деталей - Механическое уплотнение MQ1	100
9.11	Детали FRE - план 11	101
9.11.1	Чертеж в разрезе FRE - план 11	101
9.11.2	Перечень деталей FRE - план 11	101
9.12	Детали - Двойное механическое уплотнение MD1	102
9.12.1	Чертеж в разрезе - Двойное механическое уплотнение MD1	102
9.12.2	Перечень деталей - Двойное механическое уплотнение MD1	102
9.13	Детали - Режущий механизм	103
9.13.1	Чертеж в разрезе - Режущий механизм	103
9.13.2	Перечень деталей - Режущий механизм	103
10 T	ехнические данные	105
10.1	Масляная камера	105
10.2	Рекомендуемые фиксирующие жидкости	105
10.3	Моменты затяжки	106
10.3.1	Моменты затяжки болтов и гаек	106
10.3.2	Моменты затяжки установочных винтов муфты	106
10.4	Гидравлическая производительность	107
10.5	Допустимые усилия и крутящие моменты на фланцах	109
10.6	Технические данные шума	111
10.6.1	Шум насоса в зависимости от мощности насоса	111
10.6.2	Уровень шума насосной установки в целом	112
	Указатель	113
	Форма для заказа запасных частей	115

8 FRE/RU (2502) 9.7

1 Введение

1.1 Вводные замечания

Данное руководство предназначено для специалистов и обслуживающего технического персонала, а также для лиц, ответственных за размещение заказов на запасные части.

В данном руководстве содержится важная и полезная информация по эксплуатации и техническому обслуживанию насоса. В нем также содержатся важные инструкции по предотвращению возможных несчастных случаев и аварий для обеспечения безопасной и безотказной работы данного насоса.

Перед вводом насоса в эксплуатацию внимательно прочтите это руководство, ознакомьтесь с работой насоса и строго следуйте инструкциям!

Публикуемые здесь данные соответствуют самой последней информации, имеющейся на момент отправки документа в печать. Тем не менее, они могут быть изменены в дальнейшем.

Компания SPXFLOW оставляет за собой право изменить исполнение и конструкцию изделий в любое время, не будучи обязанной вносить соответствующие изменения в выполненные ранее поставки.

1.2 Безопасность

В данном руководстве содержатся инструкции по безопасной работе с насосом. Операторы и обслуживающий технический персонал должны быть ознакомлены с этими инструкциями.

Установка, эксплуатация и обслуживание должны выполняться квалифицированным хорошо подготовленным персоналом.

Ниже приводится перечень символов, используемых в этих инструкциях, и их значение:

Индивидуальная опасность для пользователя. Строгое и своевременное исполнение соответствующей инструкции является обязательным!

- **!** Вероятность повреждения или ухудшения работы насоса. Во избежание этой опасности выполните соответствующее указание.
- > Полезная инструкция или совет пользователю.

Позиции, требующие особого внимания, выделены жирным шрифтом.

Данное руководство составлено компанией SPXFLOW с максимальной тщательностью. Тем не менее, компания SPXFLOW не может гарантировать полноту приводимой информации и вследствие этого не принимает на себя каких-либо обязательств за возможные недостатки этого руководства. Покупатель/пользователь несут постоянную ответственность за проверку информации и принятие дополнительных и/или видоизмененных мер обеспечения безопасности. Компания SPXFLOW оставляет за собой право вносить изменения в инструкции по технике безопасности.

1.3 Гарантия

Компания SPXFLOW не связывает себя какими-либо иными гарантиями кроме гарантии, принятой на себя компанией SPXFLOW. В частности, компания SPXFLOW не принимает на себя каких-либо обязательств по явным и/или подразумеваемым гарантиям, подобных, но не ограничиваясь этими примерами, конкурентоспособности и/или пригодности поставляемой продукции.

Гарантия отменяется немедленно и правомерно, если:

- Уход и/или техническое обслуживание не выполняется в строгом соответствии с инструкциями.
- Установка насоса и его эксплуатация выполняются не в соответствии с инструкциями.
- Необходимые ремонтные работы выполняются не нашим персоналом или без нашего предварительного письменного разрешения.
- В поставляемую продукцию вносятся изменения без нашего предварительного письменного разрешения.
- Используемые запасные части не являются оригинальными запасными частями компании SPXFLOW.
- Использованные присадки или смазочные материалы отличались от предусмотренных.
- Поставляемая продукция не используется в соответствии с ее свойствами и/ или назначением.
- Поставляемая продукция использовалась непрофессионально, невнимательно, ненадлежащим образом и/или небрежно.
- Поставляемая продукция вышла из строя из-за неконтролируемых нами внешних обстоятельств.

Все подверженные износу детали исключаются из гарантии. Кроме того, все поставки выполняются в соответствии с нашими "Общими условиями поставки и оплаты", которые направляются Вам безвозмездно по запросу.

1.4 Инспектирование поставленных позиций

По прибытии груза сразу проверьте его на предмет отсутствия повреждений и соответствие извещению об отправке. В случае обнаружения повреждений и/ или отсутствующих деталей немедленно составьте акт, заверенный перевозчиком.

1.5 Инструкции по транспортировке и хранению

1.5.1 Bec

Как правило, насос или насосный агрегат слишком тяжелы для перемещения вручную. Поэтому необходимо использовать соответствующее транспортное и подъемное оборудование. Вес насоса либо насосного агрегата указан на этикетке, прикрепленной к обложке данного руководства.

1.5.2 Использование поддонов

Обычно насос или насосный агрегат перевозится на транспортном поддоне. По возможности оставьте его установленным на поддоне во избежание повреждений и облегчения возможной транспортировки в пределах предприятия.

І При использовании вильчатого погрузчика устанавливайте вилочные захваты как можно глубже и поднимайте агрегат, используя оба захвата одновременно во избежание опрокидывания! Предохраняйте насос от тряски при его перемещении!

1.5.3 Подъем

При подъеме насоса или насосных агрегатов в сборе стропы должны быть закреплены в соответствии с рисунок 1, рисунок 2 и рисунок 3.

При подъеме насоса или насосного агрегата в сборе всегда пользуйтесь исправным и надежным подъемным устройством, прошедшим испытания на соответствующую грузоподъемность!

Не проходите под поднятым грузом!

Если электрический двигатель оснащен подъемной проушиной, ее можно использовать только при выполнении работ, относящихся к электродвигателю!

Конструктивно подъемная проушина рассчитана только на вес электрического двигателя!

НЕ ДОПУСКАЕТСЯ подъем насосного агрегата в сборе за подъемную проушину электродвигателя!

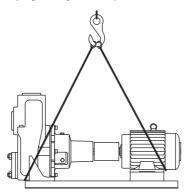


Рисунок 1: Инструкции по подъему насосного агрегата.

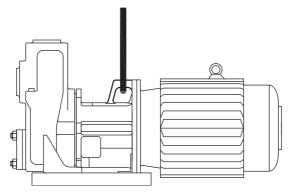


Рисунок 2: Инструкции по подъему отдельного насоса.

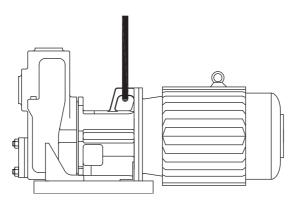


Рисунок 3: Инструкции по подъему FRES.

1.5.4 Хранение

Если насос не будет использоваться сразу, необходимо вручную проворачивать вал насоса два раза в неделю.

1.6 Заказ запасных частей

В данном руководстве содержится обзор запасных частей, рекомендуемых компанией SPXFLOW, а также инструкции по их заказу. В руководство включен бланк заказа для передачи по факсу.

При заказе запасных частей и в другой переписке относительно насоса всегда следует указывать данные, проштампованные на заводской табличке.

Эти данные напечатаны также на этикетке на лицевой стороне данного руководства.

Если у Вас появятся конкретные вопросы или потребуется дополнительная тематическая информация, без сомнений обращайтесь в компанию SPXFLOW.

2 Общие положения

2.1 Описание насоса

Насосы FreFlow представляют собой центробежные насосы самозаполняющегося типа с наполовину открытой или закрытой крыльчаткой и механическим уплотнением. Насосы имеют исполнение из чугуна, бронзы или нержавеющей стали. Насосы FreFlow можно использовать для работы с чистыми и загрязненными жидкостями.

2.2 Код типа

Насосы могут иметь различную конструкцию. Основные характеристики насоса указываются в коде типа.

Пример: FRE 50-125 G1 MQ1

	Конструкция насоса				
FRE	насос с кронштейном для подшипника				
FREF	насос с фланцевым электродвигателем и удлиненным валом				
FRES	насос с фланцевым электродвигателем (по стандарту IEC)				
FREM	насос с фланцевым двигателем внутреннего сгорания				
	Размер насоса				
50-125	всасывающее и выпускное соединения [мм] - диаметр крыльчатки [мм]				
	Материал корпуса и крыльчатки насоса				
G1	корпус и крыльчатка насоса из чугуна				
G2	корпус насоса из чугуна, крыльчатка из бронзы				
G6	корпус насоса из чугуна, крыльчатка из нержавеющей стали				
B2	корпус и крыльчатка насоса из бронзы				
R6	корпус и крыльчатка насоса из нержавеющей стали				
	Уплотнение вала				
MQ0	механическое уплотнение, несбалансированное, не по стандартам EN, с закалкой (в масле)				
MQ1	механическое уплотнение, несбалансированное, по стандарту EN 12756, с масляным охлаждением				
MD1	механическое уплотнение, двойное, несбалансированное, стандарт EN 12756				

2.3 Серийный номер

Серийный номер насоса или насосной установки указан на идентификационной пластине насоса и на этикетке на обложке этого руководства.

Пример: 19-001160

19	год выпуска
001160	уникальный номер

2.4 Группа насос-двигатель

Существует также и обозначение для группы насос-двигатель:

- Насосы со свободным концом вала обозначаются литерой "A" (FRE).
- Насосы, укомплектованные всеми деталями для сборки с двигателем, но поставляемые без двигателя, обозначаются "A5" (FRE).
- Насосы в сборе с:
 - трехфазным электродвигателем обозначаются "A6" (FRE, FRES и FREF).
 - однофазным электродвигателем обозначаются "A7" (FREF).
 - дизельным двигателем обозначаются "A11" (FREM)

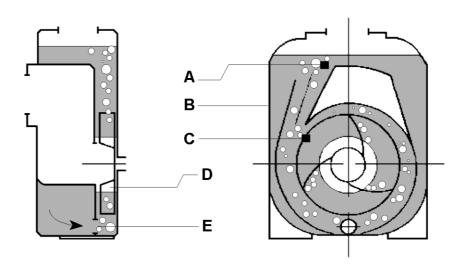
2.5 Группа подшипников

Насосы FreFlow подразделяются на 4 категории группы кронштейнов с подшипниками, т.е. на группы 1, 2, 3 и 4. Группы 1, 2 и 3 имеют модульную конструкцию. Насосы, входящие в одну группу из данных групп, имеют кронштейн для подшипников общего пользования.

Каждый из насосов из группы 4 (повышенной емкости) имеет собственный кронштейн для подшипника, но для удобства будет обозначаться как насос из группы кронштейнов для подшипников 4.

2.6 Применение

- Насосы FreFlow пригодны для работы с чистыми, загрязненными и легкоподвижными жидкостями. Максимальный размер частиц примесей зависит от размера насоса. В случае работы с вязкими жидкостями следует делать допуск на снижение пропускной способности и увеличение расхода электроэнергии. Просьба обращаться за консультациями к нам.
- Максимально допустимое давление и температура в системе, а также максимальная частота вращения зависят от типа и конструкции насоса. См. соответствующие данные в таблицах главы глава 10 "Технические данные"
- Дополнительные сведения о возможных областях применения конкретного насоса приводятся в подтверждении заказа и/или в листе технических данных, прилагаемого к комплекту поставки.
- Не используйте насос в целях, отличных от тех, для которых он был поставлен, без предварительной консультации с вашим поставщиком.


Использование насоса в системе или условиях (жидкость, рабочее давление, температура, и т. д.), для которых он не был предназначен, может подвергнуть пользователя опасности!

2.7 Принцип действия самозаполнения

Насосы FreFlow относятся к самозаполняющемуся типу. Отдельный воздушный насос или любое иное оборудование при этом не требуются. Возможна высота всасывания до 7 м. Самозаполнение основывается на принципе нагнетания. Заливку насоса жидкостью следует выполнить всего один раз. При включении насоса воздух (или газ) откачивается из линии всасывания.

Нагнетаемый воздух смешивается с жидкостью, находящейся в крыльчатке. За счет центробежной силы смесь жидкости и воздуха из улитки насоса перемещается в верхнюю половину корпуса насоса. Внутри просторного корпуса насоса из жидкости может быть удален воздух. При этом воздух отводится через линию выпуска. Деаэрированная жидкость обладает большей плотностью, чем жидкость с воздухом, содержащаяся в улитке. Из-за этого жидкость возвращается в улитку (в некоторых насосах - из группы подшипников 4 - жидкость возвращается через впускной канал крыльчатки), где происходит ее аэрация, с последующей повторной деаэрацией в верхней части корпуса насоса. Воздух удаляется из линии всасывания, и уровень жидкости в этой трубке повышается.

После того как весь воздух удален, насос начинает работу как обычный центробежный насос. Предварительным условием для исправного функционирования является наличие возможности отхода нагнетаемого воздуха без противодавления в линии выпуска. В насосе отсутствует обратный клапан, поэтому линии всасывания и выпуска могут быть полностью сифонированы, когда насос остановлен. Оставшейся в насосе жидкости всегда достаточно для следующей фазы всасывания. В случаях когда объемные трубы линии всасывания делают время всасывания слишком долгим, рекомендуется установить на всасывающем канале обратный клапан.

Α	Разделение воды и воздуха	
В	Корпус насоса	
С	Улитка	
D	Крыльчатка	
E	Отверстие обратного потока	

2.8 Варианты исполнения

Существует 4 разных варианта исполнения насосов линейки FreFlow:

- Тип FRE : Насос с кронштейном для подшипника
- Тип FRES: Насос со втулочным валом и проставочным кольцом, подключенными к фланцевому двигателю стандарта IEC
- Тип FREF: Насос с проставочным кольцом, подключенным к фланцевому двигателю с удлиненным концом вала
- Тип FREM : Насос со втулочным валом и проставочным кольцом, подключенными к дизельному двигателю

2.9 Конструкция

2.9.1 Корпус насоса и крыльчатка

Корпус насоса представляет собой комбинацию улитки (спиральной камеры) и аэрационной камеры, которые обеспечивают самозаполнение. В нижней части корпуса насоса предусмотрено большое сливное отверстие, которое также можно использовать для чистки. В зависимости от размера насоса, насос может быть оснащен наполовину открытой или закрытой крыльчаткой. Наполовину открытые крыльчатки имеют 3 или 4 лопасти с просторным каналом. Насосы с наполовину открытой крыльчаткой поставляются в комплекте со сменной износной пластиной между корпусом насоса и лопастями крыльчатки. Насосы с закрытой крыльчаткой имеют сменное кольцо для компенсации износа, которое установлено в корпус насоса, по окружности входа в крыльчатку. Данная износная пластина / кольцо позволяет выполнять ремонт насоса с минимумом затрат.

2.9.2 Конструкция кронштейна для подшипника

- В исполнении FRE насосы оснащены валом, опирающимся на два шарикоподшипника большого размера со смазкой.
- Насосы типов FRES и FREM оснащены втулочным валом, который можно установить без люфта на главный вал.
- Насосы линейки FREF имеют крыльчатку, оснащенную удлиненным валом электродвигателя. В случае исполнения FRES, FREF и FREM электродвигатель крепиться к корпусу насоса при помощи проставочного кольца.

2.9.3 Механическое уплотнение

Все насосы типов FRE, FRES и FREM обеспечиваются механическим уплотнением в соответствии с EN 12756 (DIN 24960). Насосы типа FREF оснащаются встроенным механическим уплотнением. Механическое уплотнение практически герметично. Кроме того, оно не требует обслуживания.

При нагнетании воздуха, контактные поверхности механического уплотнения сильно охлаждаются или смазываются рабочей жидкостью. Для обеспечения надлежащей смазки предусмотрена промежуточная крышка с камерой, которую необходимо заполнять смазывающим веществом (например, маслом). При этом данная жидкость не должна иметь агрессивного воздействия ни на рабочую жидкость, ни на само механическое уплотнение.

2.10 Материалы

Hacocы линейки Fre-Flow изготавливают из следующих материалов:

- цельный чугун
- чугун с крыльчаткой из бронзы
- чугун с крыльчаткой из нержавеющей стали
- цельная бронза
- цельная нержавеющая сталь

Вал насоса всегда изготовлен из нержавеющей стали (за исключением группы подшипников 4), а кронштейн для подшипника или проставочное кольцо - из чугуна. Существует ряд факторов, имеющих определяющее значение для выбора материалов. Наиболее общим является коррозионная стойкость материалов. Одной из причин выбрать насос из нержавеющей стали является профилактика загрязнения рабочей жидкости материалом насоса. Крыльчатка из бронзы рекомендуется для насосов, которые часто бездействуют, что предотвращает закупорку насоса из-за коррозии в просветах уплотнения по окружности крыльчатки. Другая причина выбрать бронзовую крыльчатку - в том, что в этом месте скорость потока, а, следовательно, и коррозия выше.

2.11 Соединения

Насосы размера FRE 32-110, 40-110, 32-150 и 40-170 являются стандартным исполнением с резьбовым соединением. Начиная с размера насоса 50-125 может быть предусмотрено фланцевое соединение по стандарту ISO 7005 PN16. Насосы из группы подшипников 4 оснащены фланцевым соединением по стандарту ISO 7005 PN10.

Все насосы также могут быть оснащены фланцевым соединением по стандарту ISO 7005 PN20 (ASME B16.5 Класс 150 фунтов). Если насосы FRE 32-110, 40-110, 32-150 и 40-170 изготовлены из бронзы, то соединительные детали (фланец и труба с резьбой) изготавливают из нержавеющей стали.

2.12 Сфера применения

Сфера применения в целом выглядит следующим образом:, *Таблица 1:Сфера применения*.

	Максимальное значение
Производительность	350 м ³ /ч
Высота нагнетания	80 м
Давление в системе	9 бар
Температура	95 °C
Самозаполнение	до 7 м
Вязкость	150 мПа/с

2.13 Использование в других целях

Насос можно использовать в других сферах применения только после предварительной консультации с компанией SPXFLOW или вашим поставщиком. Поскольку последняя перекачиваемая среда не всегда известна, следует соблюдать следующие инструкции:

- 1 Тщательно промойте насос.
- 2 Убедитесь в том, что промывочная жидкость сливается в соответствии с требованиями безопасности (охрана окружающей среды!).

Примите адекватные меры предосторожности и используйте соответствующие средства индивидуальной защиты, в частности, резиновые перчатки и очки!

2.14 Утилизация

Если принято решение отправить насос в металлолом, необходимо выполнить промывку в соответствии с методикой, приведенной для использования в других целях.

3 Монтаж

3.1 Безопасность

- Перед монтажом и вводом в эксплуатацию внимательно прочтите данное руководство. Несоблюдение этих инструкций может привести к серьезным повреждениям насоса, которые не предусматриваются условиями нашей гарантии. Пошагово следуйте приведенным инструкциям.
- Убедитесь в том, что насос не может быть запущен при выполнении монтажных работ и вращающиеся детали ограждены в достаточной степени.
- В зависимости от конструкции насосы могут использоваться для жидкостей, температура которых достигает 95°С. При монтаже насосного агрегата для работы при температуре 65°С и выше пользователь должен обеспечить установку надлежащих мер защиты и предупреждающих сигналов для предотвращения контакта с горячими частями насоса.
- Если имеется опасность накопления статического электричества, насосный агрегат в целом должен быть заземлен.
- Если перекачиваемая жидкость представляет опасность для людей или окружающей среды, примите соответствующие меры для обеспечения безопасного отвода жидкости из насоса. Необходимо также обеспечить безопасный слив возможных утечек жидкости через уплотнение вала.

3.2 Консервация

Для предупреждения коррозии перед выпуском с завода внутренняя часть насоса обрабатывается консервирующим средством.

Перед вводом насоса в эксплуатацию удалите остатки консервирующих веществ и тщательно промойте насос горячей водой.

3.3 Условия эксплуатации

- Фундамент должен быть прочным, горизонтальным и плоским.
- Участок, на котором устанавливается насос, должен иметь достаточную вентиляцию. Слишком высокие температура и влажность окружающей среды или запыленное окружение могут оказать вредное воздействие на работу электрического двигателя.
- Вокруг насосного агрегата должно быть достаточное пространство для его эксплуатации и, при необходимости, для ремонта.
- За впускным отверстием для воздуха охлаждения двигателя должно быть свободное пространство размером не менее ¼ диаметра электродвигателя для обеспечения беспрепятственного притока воздуха.
- В случае поставки насоса с изоляцией следует обратить особое внимание на предельные температуры уплотнения вала и подшипника.

3.4 Крепление

3.4.1 Монтаж насосного агрегата

Валы насоса и двигателя насосных агрегатов идеально совмещаются на заводе-изготовителе.

- 1 В случае стационарного расположения установите уровень опорной плиты на фундамент по уровню при помощи регулировочных шайб.
- 2 Тщательно затяните гайки на анкерных болтах.
- 3 Проверьте соосность валов насоса и двигателя, при необходимости выполните повторное совмещение, см. параграф 3.4.3 "Совмещение муфты".

3.4.2 Сборка насосного агрегата

Если необходимо выполнить сборку насоса и электродвигателя, выполните следующие действия:

- 1 Установите обе полумуфты на вал насоса и вал электродвигателя соответственно. Момент затяжки установочного винта указан в параграф 10.3.2 "Моменты затяжки установочных винтов муфты".
- 2 Установите насос на опорную плиту. Закрепите насос на опорной плите.
- 3 Поместите электродвигатель на опорной плите. Подвиньте насос, чтоб получился зазор в 3 мм между обеими полумуфтами.
- 4 Вставьте медные регулировочные шайбы под ножки электродвигателя. Закрепите электродвигатель на опорной плите.
- 5 Выполните совмещение муфты в соответствии со следующими инструкциями.

3.4.3 Совмещение муфты

1 Поместите линейку (A) на муфту. Вставьте или снимите столько медных шайб, сколько необходимо, чтобы установить электродвигатель на нужную высоту, так чтобы прямая кромка касалась обеих полумуфт по всей длине, см. рисунок 4.

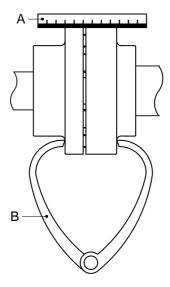


Рисунок 4: Совмещение муфты при помощи линейки и пары кронциркулей.

- 2 Повторите такую же проверку с обеих сторон муфты на высоте вала. Подвиньте электродвигатель таким образом, чтобы прямая кромка касалась обеих полумуфт по всей длине.
- 3 Еще раз проверьте совмещение при помощи пары кронциркулей (B) в 2 диаметрально противоположных точках по бокам полумуфт, см. рисунок 4.
- 4 Установите защитные крышки.

3.4.4 Допуски при совмещении муфты

Максимальные допуски при совмещении полумуфт приведены в таблице Таблица 2. См. также рисунок 5.

Таблица 2:Допуски при совмещении

Наружный диаметр	V		Va _{max} - Va _{min}	Vr _{max} [мм]
муфты [мм]	min [мм]	тах [мм]	[мм]	w max [ww]
81-95	2	4	0,15	0,15
96-110	2	4	0,18	0,18
111-130	2	4	0,21	0,21
131-140	2	4	0,24	0,24
141-160	2	6	0,27	0,27
161-180	2	6	0,30	0,30
181-200	2	6	0,34	0,34
201-225	2	6	0,38	0,38

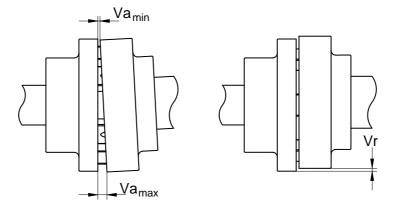


Рисунок 5: Допуски при совмещении.

3.5 Установка насосов с установленным на фланце электродвигателем

Установку насосов с установленным на фланце электродвигателем (FRES с электродвигатель B5, FREF, FREM) можно выполнить непосредственно на фундамент, при этом повторное совмещение валов насоса и электродвигателя не требуется.

3.6 Подключение магистральных трубопроводов

Существует несколько возможностей подключения всасывающего и выпускного трубопроводов:

- 1 Винтовые гнездовые соединения
 - на 2" для чугунных насосов
 - на 1 1/2" для насосов из нержавеющей стали

2 Высверленные отверстия в корпусе насоса под соединения ≥Rp50.

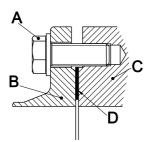


Рисунок 6: Соединение магистрального трубопровода на корпусе насоса.

Α	болт
В	фланец подключаемого трубопровода
С	корпус насоса
D	прокладка

Таблица 3:Правильный выбор болтов осуществляется в соответствии со следующей таблицей:

Размер насоса	Болт	Размер насоса	Болт
32-110		65-155	M16x40x4
32-150		80-140	M16x40x8
40-110		80-170	M16x40x8
40-170		80-210	M16x40x8
50-125b	M16x40x4	100-225b	M16x40x8
50-125	M16x40x4	100-225	M16x40x8
50-205	M16x40x4	100-250	M16x40x8
65-135b	M16x40x4	100-290b	M20x45x8
65-135	M16x40x4	100-290	M20x45x8
65-230	M16x40x4		

³ Соединения ASME для насосов размера 80

3.7 Трубопроводы

- Трубопроводы всасывающего и нагнетающего соединений должны быть точно подогнаны и не должны подвергаться каким-либо усилиям во время эксплуатации. Максимально допустимые усилия и вращающие моменты на фланцах насоса указаны в глава 10 "Технические данные".
- Сечение всасывающей трубы должно иметь достаточные размеры. Данная труба должна быть как можно короче.
- Резкие изменения в скорости потока могут привести к образованию импульсов высокого давления в насосе и трубопроводе (гидроудар). Поэтому не следует использовать быстродействующие запорные устройства, клапаны и т. д.
- Для данного самозаполняющегося насоса обратный клапан на всасывающей линии не требуется, кроме случаев, когда данная линия настолько объемная или рабочие условия настолько неблагоприятные, что было рассчитано или измерено время всасывания свыше примерно 8 минут.
- Избежать попадания внутрь больших или твердых частиц можно, установив фильтр.

• Если насос имеет двойное механическое уплотнение (вариант уплотнения вала MD1), следует подключить промывную камеру к промывной системе. Давление в промывной системе должно быть на 1,5 бар выше, чем на ступице крыльчатки!

3.8 Подключение электродвигателя

Электродвигатель должен быть подключен к питающей сети квалифицированным электриком в соответствии с действующими местными правилами электротехнической компании.

- Обратитесь к руководству с инструкциями по электродвигателю.
- Установите рабочий выключатель по возможности ближе к насосу.

3.9 Двигатель внутреннего сгорания

3.9.1 Безопасность

Если конструкция насосного агрегата включает в себя двигатель внутреннего сгорания, в комплект поставки должно входить руководство для данного двигателя. Если такое руководство отсутствует, мы настоятельно рекомендуем вам немедленно связаться с нами.

- Независимо от руководства, для всех двигателей внутреннего сгорания обязательно выполнение всех следующих правил:
- Выполняйте местные правила техники безопасности.
- Выпуск отработавших газов требует обязательного ограждения во избежание контакта.
- Пусковое устройство должно предусматривать автоматическое выключение после запуска двигателя.
- Запрещается изменять заводскую настройку максимальной частоты вращения двигателя.
- Перед запуском двигателя проверьте уровень масла.

3.9.2 Направление вращения

Направление вращения двигателя внутреннего сгорания и насоса указано стрелкой на двигателе внутреннего сгорания и на корпусе насоса. Убедитесь в том, что двигатель имеет то же направление вращения, что и насос.

4 Ввод в эксплуатацию

4.1 Осмотр насоса

 Убедитесь в том, что вал насоса вращается свободно. Проделайте это путем проворачивания конца вала в месте соединения вручную на несколько оборотов.

4.2 Осмотр двигателя

Насос с приводом от электродвигателя:

• Убедитесь в том, что предохранители установлены.

Насос с приводом от двигателя внутреннего сгорания:

- Убедитесь в том, что помещение. в котором установлен двигатель, имеет достаточную вентиляцию.
- Убедитесь в том, что ничто не препятствует удалению отработавших газов двигателя
- Перед запуском двигателя проверьте уровень масла.
- Запрещается использовать двигатель в закрытом помещении.

4.3 Масляная камера

Насосы поставляются без всякой жидкости в масляной камере!

- Наполните масляную камеру маслом, см. в параграф 10.1 "Масляная камера" информацию о правильном типе и количестве масла.
- Если перекачиваемая жидкость не может соприкасаться с маслом: заправьте масляную камеру другой подходящей жидкостью.

4.4 Проверка направления вращения

При проверке направления вращения остерегайтесь незащищенных вращающихся частей!

- 1 Направление вращения насоса указывается стрелкой. Убедитесь в том, что направление вращения двигателя совпадает с направлением вращения насоса.
- 2 Кратковременно запустите двигатель и проверьте направление вращения.
- 3 Если направление вращения **неправильное**, измените его на противоположное. Обратитесь к инструкциям в руководстве пользователя, относящимся к электрическому двигателю.
- 4 Установите защитные крышки.

4.5 Запуск

Выполните следующие действия как в случае, когда агрегат вводится в эксплуатацию впервые, так и

после ремонта насоса:

- 1 Заполните насос рабочей жидкостью через заправочное отверстие на лицевой поверхности насоса, пока жидкость не начнет переливаться.
- Откройте запорный клапан на питающем трубопроводе для промывной жидкости, если насос питается от промывной системы. Если выполняется промывка двойного механического уплотнения (версия MD1), необходимо установить соответствующее давление промывной жидкости. Давление системе должно быть на 1,5 бар выше, чем на ступице крыльчатки.
- 3 Откройте полностью отсекатель давления. Во время фазы самозаполнения необходимо, чтобы воздух отводился беспрепятственно, без противодавления в линии выпуска.
- 4 Запустите насос.
- 5 Когда в насосе установится давление, отрегулируйте. при необходимости, запорный клапан подачи, чтобы достичь необходимого рабочего давления.

Проследите, чтобы во время работы насоса вращающиеся части всегда были надежно закрыты защитными крышками!

4.6 Эксплуатация насоса

При эксплуатации насоса уделяйте внимание следующему:

- Насос не должен работать без жидкости.
- Промывная жидкость двойного механического уплотнения (версии MD1) должна всегда иметь подходящую настройку давления. Давление системе должно быть на 1,5 бар выше, чем на ступице крыльчатки.
- Никогда не пользуйтесь запорным вентилем на всасывающей линии для регулировки производительности насоса. Во время работы запорный вентиль должен быть всегда полностью открыт.
- Проверяйте достаточность абсолютного давления на входе для предотвращения парообразования в насосе.
- Проследите, чтобы разность давлений на стороне всасывания и нагнетания соответствовала характеристикам рабочего режима насоса.

4.7 Шум

Создаваемый насосом шум в значительной степени зависит от условий эксплуатации. Указанные в параграф 10.6 "Технические данные шума" значения, соответствуют нормальной работе насоса, приводимого в действие электродвигателем. Если привод насоса осуществляется от двигателя внутреннего сгорания либо он используется за пределами нормальной рабочей области, а также в случае возникновения кавитации, уровень шума может превышать 85 дБ(A). В этих случаях необходимо принять предупредительные меры, например, установить вокруг установки шумопоглощающий экран или использовать индивидуальные средства защиты слуха.

5 Обслуживание

5.1 Ежедневное обслуживание

Регулярно проверяйте давление на выходе.

При струйной очистке насосного помещения вода не должна попадать в соединительную коробку электрического двигателя! Никогда не направляйте струю воды на горячие детали насоса! Резкое охлаждение может привести к образованию трещин и истечению горячей воды!

- Некорректное обслуживание приведет с снижению срока службы, возможной поломке и утрате гарантии.
- 5.2 Двигатель внутреннего сгорания

Запрещается выполнять доливку топлива при работающем двигателе!

5.3 Механическое уплотнение

- Обычно механическое уплотнение не требует какого-либо технического обслуживания, однако его работа без жидкости не допускается. Поэтому масляная камера за механическим уплотнением всегда должна быть заполнена смазывающей жидкостью, которая не будет иметь агрессивного воздействия на перекачиваемую жидкость или механическое уплотнение. См. в параграф 10.1 "Масляная камера" информацию о правильном типе масла.
- Сливайте масло или жидкость через каждые 2000 часов эксплуатации или же один раз в год и заменяйте их свежим маслом или жидкостью. Рекомендованные количества см. в параграф 10.1 "Масляная камера".
- Убедитесь в том, что слив масла или жидкости происходит беспрепятственно. Следите, чтобы они не попадали в окружающую среду.
 - Если нет никаких проблем, то разбирать уплотнение не рекомендуется. Поскольку торцовые поверхности приработаны друг к другу. Разборка обязательно подразумевает замену механического уплотнения. В случае течи уплотнения вала, замена уплотнения обязательна.
- Если механическое уплотнение начинает течь, масляная камера будет давать перелив через отверстие в крышку маслоналивной горловины, и насос необходимо немедленно остановить для выполнения замены механического уплотнения!

5.4 Двойное механическое уплотнение

Регулярно проверяйте давление промывной жидкости. Давление системе должно быть на 1,5 бар выше, чем на ступице крыльчатки.

5.5 Влияние окружающей среды

- Регулярно очищайте фильтр в приемной линии или сетчатый фильтр в основании всасывающей трубы, поскольку засорение фильтра или сетки может вызвать снижение входного давления.
- Если существует вероятность того, что перекачиваемая жидкость при загустевании или замерзании расширяется, необходимо слить жидкость и, при необходимости, промыть насос после прекращения его эксплуатации.
- Если насос переводится в нерабочее состояние на длительное время, он подлежит консервации.
- Убедитесь в отсутствии скопления пыли или грязи на двигателе, что может влиять на температуру двигателя.

5.6 Шум

Появление шумов в насосе может указывать на возникновение определенных проблем в насосном агрегате. Импульсный шум может служить признаком кавитации, а чрезмерный шум двигателя свидетельствует об износе подшипников.

5.7 Мотор

Посмотрите технические характеристики двигателя для информации о частоте запусков-остановов.

5.8 Неисправности

Насос, в котором Вы хотите определить неисправность, может быть горячим или находиться под давлением. Заблаговременно примите предупредительные меры индивидуальной защиты (защитные очки и перчатки, защитная одежда)!

При определении источника неудовлетворительной работы насоса действуйте в следующем порядке:

- 1 Отключите подачу электрического питания на насосный агрегат. Заблокируйте рабочий выключатель при помощи навесного замка или удалите предохранители. В случае двигателя внутреннего сгорания: выключите двигатель и перекройте подачу топлива в двигатель.
- 2 Закройте запорные вентили.
- 3 Определите происхождение неисправности.
- 4 Попытайтесь определить причину неисправности, пользуясь глава 6 "Устранение неисправностей", и примите соответствующие меры либо обратитесь к компании, выполнявшей монтаж.

6 Устранение неисправностей

Неисправности в насосной установке могут быть вызваны разными причинами. Неисправность может быть не связана с насосом, она также может быть вызвана системой трубопроводов или условиями эксплуатации. Прежде всего убедитесь, что монтаж был выполнен в соответствии с инструкциями данного руководства, и условия эксплуатации отвечают техническим характеристикам приобретенного насоса.

Обычно поломки насосной установки могут быть вызваны следующими причинами:

- Неисправностями насоса.
- Поломками или неисправностями в трубопроводе.
- Неисправностями вследствие неправильного монтажа или ввода в эксплуатацию.
- Неисправностями из-за неправильного выбора насоса.

Некоторые из наиболее часто возникающих неисправностей и их возможные причины указаны в таблице ниже.

Таблица 4:Наиболее часто встречающиеся отказы.

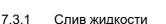
Наиболее распространенные неисправности	Возможные причины, см. Таблица 5.
Насос не нагнетает жидкость	1, 2, 3, 4, 5
Объемный расход насоса недостаточен	4, 5, 7, 8, 12, 17, 31
Напор насоса недостаточен	1, 5, 8, 9, 11, 17, 31
Электродвигатель перегружен	8, 10, 11, 12, 13, 17, 22
Насос вибрирует или издает шум	3, 4, 7, 8, 9, 14, 15, 16, 17, 18, 19, 20, 23
Подшипники чрезмерно изнашиваются или перегреваются	15, 18, 21, 22, 23
Двигатель нагревается	8, 13, 24
Насос заело	2, 6, 17, 22
Неустойчивое питание	4, 7, 9, 14
Насос не заполняется	1, 2, 5, 7
Потребление мощности насосом выше нормального	1, 8, 10, 13, 15, 16, 18, 20, 21, 24, 25, 27, 28, 32
Потребление мощности насосом ниже нормального	1, 8, 13, 14, 23, 24, 25, 26, 29, 31
Механическое уплотнение слишком часто требует замены	15, 18, 21, 28, 30, 31, 32, 33

Таблица 5:Возможные причины неисправностей насоса.

	Возможные причины
1	Неправильное направление вращения
2	Насос не наполняется жидкостью
3	Недостаточно погружены впускной канал или всасывающая труба
4	Слишком низкая высота столба жидкости над всасывающим патрубком насоса
5	Насос не достиг номинальной частоты вращения
6	Инородные частицы внутри насоса
7	Воздушная течь во всасывающей трубе
8	Вязкость жидкости отличается от расчетной
9	Из жидкости выделяется газ или воздух
10	Слишком высокая скорость
11	Полный напор ниже номинала
12	Полный напор выше номинала
13	Плотность жидкости отличается от расчетной
14	Засорение трубопровода
15	Нарушено совмещение осей насоса и двигателя
16	Подшипники неисправны или изношены
17	Крыльчатка заблокирована или повреждена
18	Вал изогнут
19	Неправильное расположение выпускного клапана
20	Фундамент недостаточно жесткий
21	Подшипники установлены неправильно
22	Вибрация
23	Слишком низкая скорость
24	Насос работает в неправильном режиме
25	Насос работает при слишком низком расходе жидкости
26	Препятствие в крыльчатке или корпусе насоса
27	Прихватывание вращающейся детали
28	Дисбаланс вращающихся деталей (например, крыльчатки или муфты)
29	Неисправность или износ компенсационного кольца или износной пластины
30	Беговые поверхности механического уплотнения повреждены
31	Неправильный монтаж механического уплотнения
32	Механическое уплотнение не подходит для данных условий эксплуатации
33	Загрязнена жидкость в масляной камере механического уплотнения

7 Разборка и сборка

7.1 Меры предосторожности


Примите соответствующие меры предотвращения запуска двигателя во время выполнения работ с насосом. Это имеет особое значение для электродвигателей с дистанционным управлением:

- Установите рабочий выключатель вблизи насоса (при его наличии) в положение "ВЫКЛЮЧЕНО".
- Отключите переключатель насоса на распределительном щите.
- При необходимости, удалите плавкие предохранители.
- Установите предупредительную табличку вблизи распределительного шкафа.

7.2 Специальные инструменты

Для выполнения работ по сборке и разборке специальные инструменты не требуются. Однако, такие инструменты могут облегчить определенные виды работ, например, замену уплотнения вала. В подобных случаях это оговаривается в тексте.

7.3 Слив

Слив жидкости
Перед началом работ по разборке следует слить жидкость из насоса.

1 При необходимости, закройте вентили всасывающей и нагнетающей труб, а также питающие линии для промывки или охлаждения уплотнения вала.

Проследите, чтобы жидкость или масло не попали в окружающую среду!

- 2 Снимите сливную пробку (0310) или очистную крышку (0370).
- 3 В случае перекачки вредных жидкостей наденьте защитные очки, обувь, перчатки и т.д. и тщательно промойте насос.
- 4 Установите на место сливную пробку или очистную крышку.

По возможности наденьте защитные перчатки. Регулярный контакт с нефтепродуктами может вызвать аллергические реакции.

7.4 Варианты конструкции

Насосы могут поставляться в разнообразных вариантах конструкции. Каждый вариант имеет код, указанный в обозначении кода на заводской табличке насоса. См. в параграф 2.2 "Код типа" более подробные разъяснения к обозначению типов.

7.5 Система обратного извлечения

В конструкции насосов применяется система обратного извлечения. Это означает, что почти весь насос целиком можно разобрать, не отсоединяя всасывающий и нагнетающий трубопроводы. Перед разборкой двигатель необходимо снять с фундамента.

7.5.1 Разборка экрана

- 1 Ослабьте затяжку болтов (0960). См. рисунок 9.
- 2 Снимите оба кожуха (0270). См. рисунок 7.

7.5.2 Разборка устройства обратного извлечения

- 1 Выверните болты (0940) и снимите монтажную пластину (0275) с кронштейна для подшипника (2100). См. рисунок 10.
- 2 Снимите электродвигатель.
- 3 Если на уплотнении вала имеется План 11: выверните винтовые соединения (1410) и (1450) и снимите обводной трубопровод (1420).
- 4 Отверните винты с головкой под шестигранник (0800).
- 5 Выньте кронштейн для подшипника (2100) целиком из корпуса насоса. У больших насосов кронштейн для подшипника в сборе очень массивный. Обеспечьте его поддержку при помощи балки или подвесьте при помощи талей.
- 6 Снимите полумуфту с вала насоса и снимите шпонку (2210).

7.5.3 Сборка устройства обратного извлечения

- 1 Вставьте новую прокладку (0300) в корпус насоса и установите кронштейн для подшипника в сборе обратно в корпус насоса. Затяните винты с головкой под шестигранник (0800) крест-накрест.
- 2 Если на уплотнении вала имеется План 11: Установите обводной трубопровод (1420) и затяните винтовые соединения (1410) и (1450).
- 3 Установите монтажную пластину (0275) на кронштейн подшипника (2100) с болтами (0940). См. рисунок 10.
- 4 Установите шпонку (2210) и установите полумуфту на вал насоса.
- 5 Установите двигатель на его место.
- 6 Проверьте совмещение насоса и вала двигателя, см. параграф 3.4.3 "Совмещение муфты". При необходимости выполните повторное совмещение.

7.5.4 Сборка экрана

1 Установите кожух (0270) на стороне двигателя. Кольцевая канавка должна располагаться на стороне двигателя.

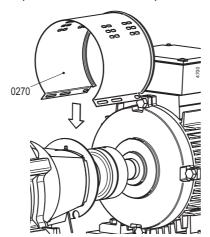


Рисунок 7: Установка кожуха на стороне двигателя.

2 Поместите монтажную пластину (0280) поверх вала двигателя и установите ее в кольцевую канавку кожуха.

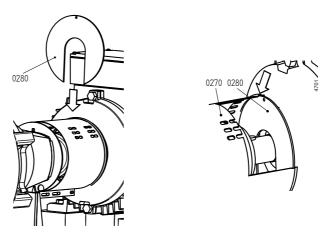


Рисунок 8: Установите монтажную пластину на стороне двигателя.

3 Закройте кожух и установите болт (0960). См. рисунок 9.

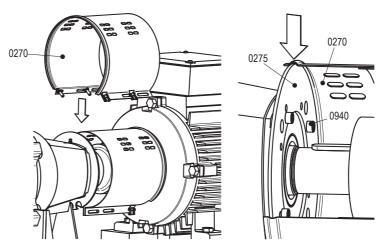


Рисунок 9: Установка кожуха.

4 Установите кожух (0270) на стороне насоса. Поместите его на установленный кожух на стороне двигателя. Кольцевая канавка должна располагаться на стороне насоса.

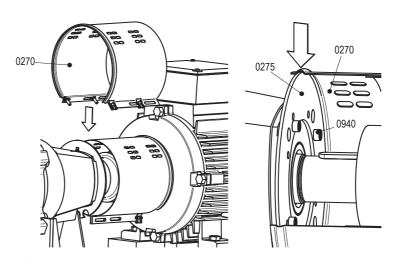


Рисунок 10: Установка кожуха на стороне насоса.

5 Закройте кожух и установите болт (0960). См. рисунок 9.

6 Надвиньте кожух на стороне двигателя к электродвигателю настолько, насколько это возможно. Закрепите оба кожуха болтом (0960).

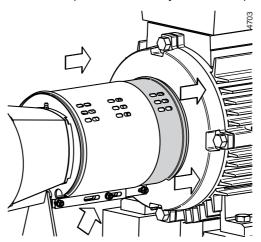


Рисунок 11: Регулировка кожуха на стороне двигателя.

7.6 Замена крыльчатки и компенсационного кольца

Зазор между наполовину открытой крыльчаткой и износной пластиной может быть не менее 0,3 мм и не более 0,6 мм. Если наблюдается ухудшение эксплуатационных характеристик насоса, это может быть указанием на износ крыльчатки и износной пластины. Чтобы проверить это, насос необходимо разобрать с тем, чтобы измерить зазор между крыльчаткой и износной пластиной.

7.6.1 Измерение зазора между крыльчаткой и износной пластиной, FRE группы подшипников 1

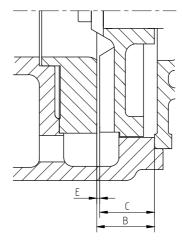


Рисунок 12: Зазор между крыльчаткой и износной пластиной, FRE группы подшипника 1.

- 1 Снимите устройство обратного извлечения, см. параграф 7.5.2 "Разборка устройства обратного извлечения".
- 2 Измерьте расстояние В между износной пластиной и корпусом насоса, см. рисунок 12.
- 3 Измерьте расстояние между крыльчаткой и промежуточной крышкой, см. рисунок 12.
- 4 Рассчитайте размер регулировочной прокладки (0220), которую следует вставить, по формуле: E = B C.
- Размер Е должен быть не менее 0,3 мм и не более 0,6 мм
- **!** Если расчетная толщина прокладки превышает 0,6 мм, необходимо заменить крыльчатку и износную пластину!

7.6.2 Измерение зазора между крыльчаткой и износной пластиной, остальные группы подшипников

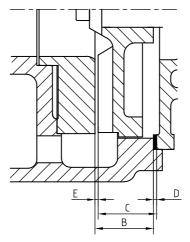


Рисунок 13: Измерение зазора между крыльчаткой и износной пластиной.

- 1 Снимите устройство обратного извлечения, см. параграф 7.5.2 "Разборка устройства обратного извлечения".
- 2 Снимите прокладку (0300) и очистите кромки корпуса насоса и промежуточной крышки.
- 3 Измерьте расстояние В между износной пластиной и корпусом насоса, см. рисунок 13.
- 4 Измерьте расстояние C между крыльчаткой и промежуточной крышкой, см. рисунок 13.
- 5 Найдите подходящую толщину прокладки D в следующей ниже таблице.
- 6 Рассчитайте размер зазора E по формуле: E = B C + D
- 7 Если в связи с износом зазор увеличился выше максимально допустимого значения, крыльчатку и износную пластину необходимо заменить.
- Для FRES или FREM может оказаться полезно проверить расстояние A, см. параграф 7.9.2 "Регулировка крыльчатки" или параграф 7.11.2 "Регулировка крыльчатки": неверная регулировка крыльчатки также может быть причиной слишком большого зазора.

	толщина прокладки [мм]												
0,25	0,3	0,5											
80-170	50-125	80-210											
100-225	50-125b	100-250											
100-225b	65-135	150-290											
	65-135b	150-290b											
	65-155												
	80-140												

- 7.6.3 Разборка крыльчатки, кронштейн для подшипника 1
 - 1 Снимите устройство обратного извлечения, см. параграф 7.5.2 "Разборка устройства обратного извлечения"
 - 2 Снимите болт крыльчатки (1820) и пружинную шайбу (1825).
 - Снимите крыльчатку (0120) с вала насоса при помощи подходящего съемника.
 - 4 Снимите подкрепляющее кольцо (1880).
- 7.6.4 Сборка крыльчатки, кронштейн для подшипника 1
 - 1 Вставьте усилительное кольцо (1880) в выточку в вале насоса (2200).
 - 2 Для насосов из бронзы или нержавеющей стали усилительное кольцо должно быть изолировано от жидкости. Для этого нанесите Loctite 572 упорную поверхность (0120) крыльчатки, на конец вала и заднюю часть усилительного кольца
 - 3 Надвиньте крыльчатку поверх усилительного кольца на вал. **Убедитесь в** том, что его положение вровень с валом!
 - 4 Нанесите каплю Loctite 243 на резьбу и вставьте болт и пружинную шайбу (1825) крыльчатки. См. в глава 10 "Технические данные" правильное значение момента.
- 7.6.5 Разборка крыльчатки, прочие кронштейны для подшипников
 - 1 Снимите устройство обратного извлечения, см. параграф 7.5.2 "Разборка устройства обратного извлечения".
 - 2 Кронштейн для подшипника 4: Выровняйте края стопорного кольца (1825).
 - 3 Разъедините гайку крыльчатки или болт крыльчатки (1820).
 - 4 Кронштейны для подшипников 2 и 3: Снимите шайбу (1830).
 - 5 Снимите крыльчатку (0120) с вала насоса при помощи подходящего съемника.
 - 6 Снимите гайку крыльчатки (1860) с вала насоса.
- 7.6.6 Сборка крыльчатки, прочие кронштейны для подшипников
 - 1 Установите шпонку крыльчатки (1860) в канал в вале насоса (2200).
 - 2 Надвиньте крыльчатку на вал насоса.
 - 3 Кронштейны для подшипников 2 и 3: Установите шайбу (1830).
 - 4 Кронштейн для подшипника 4: Установите стопорное кольцо (1825).
 - 5 Обезжирьте резьбу вала насоса и гайку крыльчатки (1820) или болт крыльчатки (1820).
 - 6 Нанесите каплю Loctite 243 на резьбу и установите гайку или болт крыльчатки. См. в глава 10 "Технические данные" правильное значение момента.
 - 7 Кронштейн для подшипника 4: Вставьте края стопорного кольца (1825) в выемки на вале насоса и в гайке крыльчатки или болте крыльчатки.
- 7.6.7 Снятие износной пластины

После разборки устройства обратного извлечения можно вынуть износную пластину. См. номера деталей в рисунок 55.

- 1 Ослабьте затяжку винтов (0115).
- 2 Выньте износную пластину (0125) из корпуса насоса, включая возможную режущую пластину (0105), если насос оснащен режущим механизмом.

7.6.8 Установка износной пластины

- 1 Очистите кромку корпуса насоса, где будет устанавливаться износная пластина.
- 2 Вставьте износную пластину, включая возможно имеющуюся режущую пластину (0105), если насос оснащен режущим механизмом, в корпус насоса. При этом убедитесь в том, чтобы она не была смещена относительно оси. Обратите внимание на положение отверстий.
- 3 Затяните износную пластину винтами (0115). При этом воспользуйтесь Loctite 243 для фиксации винтов.

7.6.9 Разборка компенсационного кольца

У насосов с закрытой крыльчаткой износ случается между крыльчаткой и компенсационным кольцом. Такой износ не должен превышать 1,2 мм к диаметру.

После удаления выдвижного узла можно извлечь компенсационное кольцо. В большинстве случаев кольцо установлено так плотно, что извлечь его без повреждения нельзя.

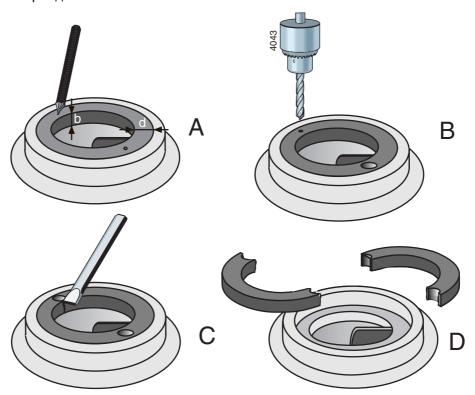


Рисунок 14: Извлечение компенсационного кольца

- 1 Измерьте толщину (d) и ширину (b) кольца, см. рисунок 14 А.
- 2 Проделайте центрующие отверстия посередине кромки кольца в двух противоположных точках, см. рисунок 14 В.
- 3 Пользуясь сверлом с диаметром несколько меньшим, чем толщина кольца d), просверлите в кольце два отверстия, см. рисунок 14 С. Глубина сверления не должна превышать ширину кольца (b). Старайтесь не повредить установочную фаску корпуса насоса.

- 4 Пользуясь зубилом, вырубите оставшуюся часть толщины кольца. Теперь кольцо можно разделить на две части и извлечь его из корпуса насоса, см. рисунок 14 D.
- 5 Очистите корпус насоса, тщательно удаляя отходы сверления и обломки металла.

7.6.10 Сборка компенсационного кольца

- 1 Выполните очистку и обезжиривание установочной кромки корпуса насоса, где будет монтироваться компенсационное кольцо.
- 2 Удалите смазку с наружного края компенсационного кольца и нанесите на него несколько капель герметика Loctite 641.
- 3 Установите компенсационное кольцо в корпус насоса. **Проследите**, **чтобы при этом не нарушилась центровка**!

7.7 Механическое уплотнение

- 7.7.1 Инструкции по монтажу механического уплотнения
- В первую очередь прочтите инструкции, относящиеся к монтажу механического уплотнения. При монтаже механического уплотнения строго следуйте этим инструкциям.
 - Поручите специалисту сборку механического уплотнения с кольцевыми прокладками, имеющими ПТФЭ (тефлоновое) покрытие. Эти прокладки легко повреждаются при сборке.
 - Механическое уплотнение представляет собой хрупкое прецизионное устройство. Храните уплотнение в оригинальной упаковке до полной готовности к его установке!
 - Тщательно очистите все детали. Убедитесь в том, что Ваши руки и рабочее окружение очищены!
 - Не прикасайтесь пальцами к поверхности скольжения!
 - Старайтесь не повредить уплотнение при сборке. Не укладывайте кольца поверхностью скольжения вниз!

7.7.2 Разборка механического уплотнения MG12

См. номера деталей в рисунок 51.

- 1 Снимите крыльчатку (0120), см. параграф 7.6.3 "Разборка крыльчатки, кронштейн для подшипника 1" И параграф 7.6.5 "Разборка крыльчатки, прочие кронштейны для подшипников".
- 2 Снимите вращающуюся деталь механического уплотнения (1220) с вала насоса.
- 3 Снимите промежуточную крышку (0110) с кронштейна подшипника (2100).
- 4 Снимите маслосборник (1235) и встречное кольцо механического уплотнения с промежуточной крышки.

7.7.3 Сборка механического уплотнения MG12

- 1 Нанесите немного смазки на маслосборник (1235) и вставьте его в промежуточную крышку (0110).
- 2 Положите промежуточную крышку горизонтально вниз. Увлажните уплотнительную камеру промежуточной крышки небольшим количеством воды с малым поверхностным натяжением (добавьте в нее моющее средство) и установите встречное кольцо механического уплотнения прямо в нее
- 3 Установите коническую монтажную втулку на вал насоса или на втулочный вал
- 4 Установите промежуточную крышку на вал насоса, в кронштейн подшипника (2100).
- 5 Увлажните вал насоса небольшим количеством воды с малым поверхностным натяжением (добавьте в нее моющее средство). Использовать масло или смазку запрещается! Надвиньте вращающуюся часть уплотнения легким поворотом по часовой стрелке на вал, пока задняя часть сильфона не будет вровень с буртиком вала. Давление или напряжение во время сборки следует прикладывать только через задний конец сильфона.
- 6 Снимите монтажную втулку.
- 7 Только для FRE 150-290 и 150-290b: Вставьте сепаратор (0370).

8 Установите крыльчатку и остальные детали, см. параграф 7.6.4 "Сборка крыльчатки, кронштейн для подшипника 1" и параграф 7.6.6 "Сборка крыльчатки, прочие кронштейны для подшипников".

7.7.4 Разборка механического уплотнения М7N

См. номера деталей в рисунок 51.

- 1 Снимите крыльчатку (0120), см. параграф 7.6.3 "Разборка крыльчатки, кронштейн для подшипника 1" И параграф 7.6.5 "Разборка крыльчатки, прочие кронштейны для подшипников".
- 2 Снимите вращающуюся деталь механического уплотнения (1220) с вала насоса.
- 3 Снимите промежуточную крышку (0110) с кронштейна подшипника (2100).
- 4 Снимите маслосборник (1235) и встречное кольцо механического уплотнения с промежуточной крышки.

7.7.5 Сборка механического уплотнения М7N

- 1 Нанесите немного смазки на маслосборник (1235) и вставьте его в промежуточную крышку (0110).
- 2 Положите промежуточную крышку горизонтально. Нанесите аэрозоль глицерина или силикона в отсек уплотнения промежуточной крышки и вдавите прямо в него встречное кольцо механического уплотнения. Отверстие во встречном кольце должно соответствовать положению стопорного штифта (1270), в противном случае встречное кольцо сломается!
- 3 Установите коническую монтажную втулку на вал насоса или на втулочный вал.
- 4 Установите промежуточную крышку на вал насоса, в кронштейн подшипника (2100).
- 5 Надвиньте вращающуюся часть механического уплотнения на вал привода. Нанесите аэрозоль глицерина или силикона на кольцевое уплотнение для профилактики его вращения на втулке вала.
- 6 Отрегулируйте вращающуюся часть механического уплотнения до расстояния X (см. рисунок 15 и соответствующую таблицу) и зафиксируйте его, затянув установочный винт (1220).
- 7 Снимите монтажную втулку.
- 8 Установите крыльчатку и остальные детали, см. параграф 7.6.4 "Сборка крыльчатки, кронштейн для подшипника 1" и параграф 7.6.6 "Сборка крыльчатки, прочие кронштейны для подшипников".

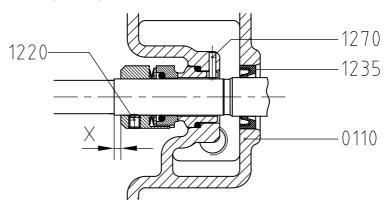


Рисунок 15: Регулировка механического уплотнения M7N.

ø вала	16	25	30	40	50
X	23	3	7	0	10,8

7.7.6 Разборка двойного механического уплотнения МD1

См. номера деталей в рисунок 54.

- 1 Разберите крыльчатку (0120), см. параграф 7.6.3 "Разборка крыльчатки, кронштейн для подшипника 1" и параграф 7.6.5 "Разборка крыльчатки, прочие кронштейны для подшипников".
- 2 Снимите болты (1800) и сдвиньте назад крышку механического уплотнения (1230).
- 3 Отметьте положение промежуточной крышки (0110) относительно кронштейна подшипника (2100). Обстучите промежуточную крышку для ее освобождения и снимите ее.
- 4 Выверните оба установочных винта (1250) и снимите втулку вала (1200) с вала насоса.
- 5 Выверните установочный винт и снимите вращающиеся части механического уплотнения (1220) с вала насоса.
- 6 Выверните установочный винт и снимите вращающиеся части механического уплотнения (1225) с втулки вала.
- 7 Извлеките встречное кольцо механического уплотнения (1225) из промежуточной крышки.
- 8 Снимите крышку механического уплотнения с вала насоса и удалите встречное кольцо механического уплотнения (1220). Снимите кольцевое уплотнение (1300).

7.7.7 Сборка двойного механического уплотнения MD1

- 1 Положите крышку механического уплотнения (1230) горизонтально. Нанесите аэрозоль глицерина или силикона в отсек уплотнения промежуточной крышки и вдавите прямо в него встречное кольцо механического уплотнения (1220). Отверстие во встречном кольце должно соответствовать положению стопорного штифта (1260), в противном случае встречное кольцо сломается!
- 2 Положите промежуточную крышку (0110) горизонтально. Нанесите аэрозоль глицерина или силикона в отсек уплотнения промежуточной крышки и вдавите прямо в него встречное кольцо механического уплотнения (1225). Отверстие во встречном кольце должно соответствовать положению стопорного штифта (1270), в противном случае встречное кольцо сломается!
- 3 Установите кольцевое уплотнение (1320) на втулку вала. Установите вращающуюся часть механического уплотнения (1225) на втулку вала. Затяните установочный винт.
- 4 Поставьте вертикально кронштейн для подшипника с валом.
- 5 Установите крышку механического уплотнения на вал насоса. Установите кольцевое уплотнение (1300).

6 Установите вращающуюся часть механического уплотнения (1220) на вал. Отрегулируйте вращающуюся часть механического уплотнения до расстояния X1 на рисунок 16 и в соответствующей таблице. Зафиксируйте ее закрепив установочный винт.

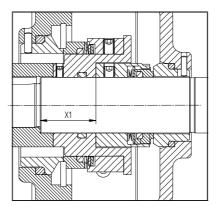


Рисунок 16: Регулировка механического уплотнения MD1.

ø вала	16	25	30
Х	43	18,8	30

- 7 Установите на вал втулку вала (1200) с вращающейся частью уплотнения вала (1225).
- 8 Установите промежуточную крышку в правильное положение в центрирующем венце кронштейна подшипника (2100).
- 9 Поставьте крышку механического уплотнения (1230) на промежуточную крышку. Убедитесь в том, что она установлена в верное положение, с точки зрения соединений. Затяните болты (1800) крест-накрест. Крышку нельзя устанавливать под углом.
- 10 Установите крыльчатку и остальные детали, см. параграф 7.6.6 "Сборка крыльчатки, прочие кронштейны для подшипников".

7.8 Подшипник

- 7.8.1 Инструкции по сборке и разборке подшипников
- В первую очередь ознакомьтесь со следующими инструкциями по сборке и разборке. Строго следуйте этим инструкциям во время сборки и разборки подшипников.

Разборка:

- Используйте **соответствующий съемник** для снятия подшипников с вала насоса.
- Если такой съемник отсутствует, аккуратно обстучите подшипник по внутреннему каналу качения. Для этого воспользуйтесь обычным молотком и выколоткой из низкоуглеродистой стали.

Бить молотком по подшипнику запрещается!

Сборка:

- Убедитесь в чистоте рабочего места.
- Как можно дольше держите подшипники в их исходной упаковке.
- Убедитесь в том, что вал насоса и гнезда подшипников действительно имеют гладкие поверхности, без всяких неровностей.
- Нанесите немного масла на вал насоса и прочие относящиеся к делу детали перед сборкой.
- Нагрейте подшипники до 110°C до того, как устанавливать их на вал насоса.
- Если нагрев невозможен: набейте подшипник на вал. Бить непосредственно по подшипнику запрещается! Воспользуйтесь монтажной втулкой, помещенной у внутреннего канала качения подшипника, и обычным молотком (мягкий молоток может дать осколки, которые могут повредить подшипник).
- 7.8.2 Разборка подшипников FRE кронштейн для подшипника 1

См. номера деталей в рисунок 43.

- 1 Разберите крыльчатку и уплотнение вала, см. параграф 7.6.3 "Разборка крыльчатки, кронштейн для подшипника 1" и параграф 7.7.2 "Разборка механического уплотнения MG12".
- 2 Разберите пластинчатое уплотнение (2165).
- 3 Снимите крышку подшипника (2115).
- 4 Разберите внутреннее разрезное стопорное кольцо (2305) и снимите регулировочное кольцо (2330).
- 5 С помощью капронового молотка обстучите вал со стороны крыльчатки с подшипниками, чтобы снять его с задней части кронштейна для подшипника.
- 6 Используйте соответствующий съемник для снятия подшипников с вала насоса.
- 7 Разберите внутреннее разрезное стопорное кольцо (2300).

- 7.8.3 Сборка подшипников FRE кронштейн для подшипника 1
 - 1 Установите разогретый подшипник (2250) с осторожностью на вал насоса (2200) на стороне крыльчатки и плотно наденьте его на буртик вала. **Дайте подшипнику остыть!**
 - 2 Осторожно установите разогретый подшипник (2260) на вал насоса со стороны привода и плотно наденьте его на буртик вала. **Дайте подшипнику остыть!**
 - 3 Установите внутреннее разрезное стопорное кольцо (2300) в выточку под подшипник на стороне крыльчатки.
 - 4 Протолкните вал с обоими подшипниками через отверстие в задней части кронштейна для подшипника, пока подшипник на стороне крыльчатки не коснется внутреннего стопорного кольца.
 - 5 Установите регулировочное кольцо (2330) на подшипник на стороне привода и вставьте внутреннее стопорное кольцо (2305), так чтобы его зубья смотрели на регулировочное кольцо.
 - 6 Установите крышку подшипника (2115) на стороне привода и закройте подшипник со стороны крыльчатки, установив пластинчатое уплотнение (2165).
 - 7 Установите уплотнение вала и крыльчатку, см. параграф 7.7.3 "Сборка механического уплотнения MG12" и параграф 7.6.4 "Сборка крыльчатки, кронштейн для подшипника 1".
- 7.8.4 Разборка подшипников FRE кронштейн для подшипника 2

См. номера деталей в рисунок 44.

- 1 Разберите крыльчатку и уплотнение вала, см. параграф 7.6.5 "Разборка крыльчатки, прочие кронштейны для подшипников" и параграф 7.7.2 "Разборка механического уплотнения MG12".
- 2 Разберите пластинчатое уплотнение (2165).
- 3 Снимите крышку подшипника (2115).
- 4 Разберите внутреннее разрезное стопорное кольцо (2305) и снимите регулировочное кольцо (2330).
- 5 С помощью капронового молотка обстучите вал со стороны крыльчатки с подшипниками, чтобы снять его с задней части кронштейна для подшипника.
- 6 Используйте соответствующий съемник для снятия подшипников с вала насоса. Снимите резиновое кольцо (2390).
- 7 Снимите регулировочное кольцо (2335) из выточки под подшипник.
- 8 Разберите внутреннее разрезное стопорное кольцо (2300).
- 7.8.5 Сборка подшипников FRE кронштейн для подшипника 2
 - 1 Установите резиновое кольцо (2390) на вал насоса на стороне крыльчатки, так чтобы его наибольшая часть смотрела на крыльчатку.
 - 2 Осторожно установите разогретый подшипник (2250) на вал насоса (2200) на стороне крыльчатки и плотно наденьте его на резиновое кольцо. **Дайте** подшипнику остыть!
 - 3 Осторожно установите разогретый подшипник (2260) на вал насоса со стороны привода и плотно наденьте его на буртик вала. **Дайте подшипнику остыть!**

- 4 Аккуратно сдвиньте резиновое кольцо в сторону и нанесите немного смазки с обеих сторон радиально-упорного подшипника (2250). Верните резиновое кольцо в правильное положение.
- 5 Установите внутреннее разрезное стопорное кольцо (2300) в выточку под подшипник на стороне крыльчатки.
- 6 Установите на него регулировочное кольцо (2335).
- 7 Протолкните вал с обоими подшипниками через отверстие в задней части кронштейна для подшипника, пока подшипник на стороне крыльчатки не коснется внутреннего стопорного кольца. Теперь регулировочное кольцо зафиксировано между подшипником и внутренним стопорным кольцом.
- 8 Установите регулировочное кольцо (2330) на подшипник на стороне привода и вставьте внутреннее стопорное кольцо (2305), так чтобы его зубья смотрели на регулировочное кольцо.
- 9 Установите крышку подшипника (2115) на стороне привода и закройте подшипник со стороны крыльчатки, установив пластинчатое уплотнение (2165).
- 10 Установите уплотнение вала и крыльчатку, см. параграф 7.7.3 "Сборка механического уплотнения MG12" и параграф 7.6.6 "Сборка крыльчатки, прочие кронштейны для подшипников".
- 7.8.6 Разборка подшипников FRE кронштейн для подшипника 3

См. номера деталей в рисунок 45.

- 1 Разберите крыльчатку и уплотнение вала, см. параграф 7.6.5 "Разборка крыльчатки, прочие кронштейны для подшипников" и параграф 7.7.2 "Разборка механического уплотнения MG12".
- 2 Разберите пластинчатое уплотнение (2165).
- 3 Снимите крышку подшипника (2115).
- 4 Разберите внутреннее разрезное стопорное кольцо (2300) на стороне привода и снимите регулировочное кольцо (2331), волнистое кольцо (2355) и еще одно регулировочное кольцо (2330).
- 5 С помощью капронового молотка обстучите вал со стороны крыльчатки с подшипниками, чтобы снять его с задней части кронштейна для подшипника.
- 6 Используйте соответствующий съемник для снятия подшипников с вала насоса. Снимите оба резиновых кольца (2390).
- 7 Снимите регулировочное кольцо (2335) из выточки под подшипник.
- 8 Разберите внутреннее разрезное стопорное кольцо (2300).
- 7.8.7 Сборка подшипников FRE кронштейн для подшипника 3
 - 1 Наденьте оба резиновых кольца (2390) на вал насоса, так чтобы их большие стороны смотрели в противоположные стороны.

! Подшипник следует устанавливать с настройкой X!

- 2 Установите разогретый подшипник (2250) с осторожностью на вал насоса (2200) на стороне крыльчатки и плотно наденьте его на буртик вала. **Дайте подшипнику остыть!**
- 3 Осторожно установите разогретый подшипник (2260) на вал насоса со стороны привода и плотно наденьте его на буртик вала. **Дайте подшипнику остыть!**

- 4 Аккуратно сдвиньте резиновое кольцо в сторону и нанесите немного смазки с обеих сторон подшипников. Верните резиновые кольца в их правильные положения.
- 5 Установите внутреннее разрезное стопорное кольцо (2300) в выточку под подшипник на стороне крыльчатки.
- 6 Установите на него регулировочное кольцо (2335).
- 7 Протолкните вал с обоими подшипниками через отверстие в задней части кронштейна для подшипника, пока подшипник на стороне крыльчатки не коснется внутреннего стопорного кольца. Теперь регулировочное кольцо зафиксировано между подшипником и внутренним стопорным кольцом.
- 8 Установите регулировочное кольцо (2330) на подшипник со стороны привода, а также волнистое кольцо (2355) и регулировочное кольцо (2331).
- 9 Установите со стороны привода внутреннее разрезное стопорное кольцо (2300).
- 10 Установите крышку подшипника (2115) на стороне привода и закройте подшипник со стороны крыльчатки, установив пластинчатое уплотнение (2165).
- 11 Установите уплотнение вала и крыльчатку, см. параграф 7.7.3 "Сборка механического уплотнения MG12" и параграф 7.6.6 "Сборка крыльчатки, прочие кронштейны для подшипников".

7.8.8 Разборка подшипников FRE 80-210 и 100-250

См. номера деталей в рисунок 46.

- 1 Разберите крыльчатку и уплотнение вала, см. параграф 7.6.5 "Разборка крыльчатки, прочие кронштейны для подшипников" и параграф 7.7.2 "Разборка механического уплотнения MG12".
- 2 Разберите манжетное уплотнение (2180).
- 3 Удалите винты с головкой под шестигранник (2815) и снимите защитные крышки (2115).
- 4 Разберите внутреннее разрезное стопорное кольцо (2305) и снимите регулировочное кольцо (2330), если такое имеется.
- 5 С помощью капронового молотка обстучите вал со стороны крыльчатки с подшипниками, чтобы снять его с задней части кронштейна для подшипника.
- 6 Используйте соответствующий съемник для снятия подшипников с вала насоса.
- 7 Снимите грязезащитное кольцо (2310).
- 8 Снимите оба наружных стопорных кольца (2340) и (2345).
- 9 Выньте грязезащитное кольцо (2315) и регулировочное кольцо (2335), если такое имеется, из выточки под подшипник.
- 10 Разберите внутреннее разрезное стопорное кольцо (2300).

7.8.9 Сборка подшипников FRE 80-210 и 100-250

- 1 Установите наружные стопорные кольца (2340) и (2345).
- 2 Поместите грязезащитное кольцо (2310) на вал насоса (2200) со стороны крыльчатки.

- 3 Аккуратно установите разогретый подшипник (2250) на вал насоса со стороны крыльчатки, так чтобы большая часть внутреннего кольца смотрела на внешнее стопорное кольцо, и плотно наденьте его на внешнее стопорное кольцо. Дайте подшипнику остыть! Теперь грязезащитное кольцо (2310) зафиксировано между подшипником и внешним стопорным кольцом.
- 4 Аккуратно установите разогретый подшипник (2260) на вал насоса (2200) на стороне привода и плотно наденьте его на наружное стопорное кольцо. Дайте подшипнику остыть!
- 5 Аккуратно сдвиньте резиновое кольцо в сторону и нанесите немного смазки с обеих сторон радиально-упорного подшипника (2250). Верните резиновое кольцо в правильное положение.
- 6 Установите внутреннее стопорное кольцо (2300).
- 7 *Только для FRE 100-250:* Установите регулировочное кольцо (2335) внутреннее разрезное стопорное кольцо.
- 8 Установите грязезащитное кольцо (2315).
- 9 Протолкните вал с обоими подшипниками через отверстие в задней части кронштейна для подшипника, пока подшипник на стороне крыльчатки не коснется внутреннего стопорного кольца. Теперь регулировочное кольцо, если таковое имеется, и грязезащитное кольцо зафиксированы между подшипником и внутренним стопорным кольцом.
- 10 Только для FRE 100-250: Установите регулировочное кольцо (2330).
- 11 Установите внутреннее стопорное кольцо (2305).
- 12 Установите крышку подшипника (2115) со стороны привода при помощи винтов с головкой под шестигранник (2815).
- 13 Установите на стороне крыльчатки манжетное уплотнение (2180).
- 14 Установите уплотнение вала и крыльчатку, см. параграф 7.7.3 "Сборка механического уплотнения МG12" и параграф 7.6.6 "Сборка крыльчатки, прочие кронштейны для подшипников".

7.8.10 Разборка подшипников FRE 150-290b и 150-290

См. номера деталей в рисунок 47.

- 1 Разберите крыльчатку и уплотнение вала, см. параграф 7.6.5 "Разборка крыльчатки, прочие кронштейны для подшипников" и параграф 7.7.2 "Разборка механического уплотнения MG12".
- 2 Разберите манжетное уплотнение (2180).
- 3 Удалите винты с головкой под шестигранник (2815) и снимите защитные крышки (2115).
- 4 Разберите внутреннее разрезное стопорное кольцо (2305) и снимите регулировочное кольцо (2330).
- 5 С помощью капронового молотка обстучите вал со стороны крыльчатки с подшипниками, чтобы снять его с задней части кронштейна для подшипника.
- 6 Используйте соответствующий съемник для снятия подшипников с вала насоса.
- 7 Снимите грязезащитное кольцо (2310).
- 8 Выньте грязезащитное кольцо (2315) и регулировочное кольцо (2335) из выточки под подшипник.

7.8.11 Сборка подшипников 150-290b и 150-290

- 1 Поместите грязезащитное кольцо (2310) на вал насоса (2200) со стороны крыльчатки.
- 2 Установите разогретый подшипник (2250) с осторожностью на вал насоса на стороне крыльчатки, так чтобы большая часть внутреннего кольца смотрела на внешнее стопорное кольцо, и плотно наденьте его на буртик вала. Дайте подшипнику остыть! Теперь грязезащитное кольцо (2310) зафиксировано между подшипником и буртиком вала.
- 3 Осторожно установите разогретый подшипник (2260) на вал насоса со стороны привода и плотно наденьте его на наружное стопорное кольцо. **Дайте подшипнику остыть!**
- 4 Аккуратно сдвиньте резиновое кольцо в сторону и нанесите немного смазки с обеих сторон радиально-упорного подшипника (2250). Верните резиновое кольцо в правильное положение.
- 5 Установите регулировочное кольцо (2335) в выточку под подшипник на стороне крыльчатки.
- 6 Установите грязезащитное кольцо (2315).
- 7 Протолкните вал с обоими подшипниками через отверстие в задней части кронштейна для подшипника, пока подшипник на стороне крыльчатки не коснется гнезда подшипника. Теперь регулировочное кольцо, если таковое имеется, и грязезащитное кольцо зафиксированы между подшипником и гнездом подшипника.
- 8 Разместите регулировочное кольцо (2330) и установите внутреннее разрезное стопорное кольцо (2305).
- 9 Установите крышку подшипника (2115) со стороны привода при помощи винтов с головкой под шестигранник (2815).
- 10 Установите на стороне крыльчатки манжетное уплотнение (2180).
- 11 Установите уплотнение вала и крыльчатку, см. параграф 7.7.3 "Сборка механического уплотнения MG12" и параграф 7.6.6 "Сборка крыльчатки, прочие кронштейны для подшипников".

7.9 FRES

7.9.1 Сборка двигателя

Электрический двигатель должен быть оснащен неподвижным подшипником.

- 1 Убедитесь в том, что осевой зазор вала двигателя не превышает 0,3 мм.
- 2 Поставьте двигатель вертикально, обеспечьте опору валу на стороне вентилятора, так чтобы он сместился к стороне фланца двигателя и осевой зазор был поглощен.
- 3 Для двигателей до IEC 112 включительно выньте шпонку из конца вала
- 4 Наденьте втулочный вал (2200) на конец вала.
- 5 Установите 2 установочных винта (2280) в ступицу промежуточного вала, используя Loctite 243, пока они не окажутся внутри шпоночной канавки, но не затягивайте винты. Для двигателей начиная с IEC 112 и выше установите только один установочный винт на стороне корпуса насоса
- 6 Поместите проставочное кольцо (0250) на двигатель с помощью болтов (0850) и гаек (0900).

7.9.2 Регулировка крыльчатки

- 1 Установите промежуточную крышку (0110), механическое уплотнение (1220) и крыльчатку (0120).
- 2 Отрегулируйте крыльчатку до размера **A** между задней частью крыльчатки и промежуточной крышкой. См. рисунок 17 и Таблица 6 ниже. Предпочтительно воспользоваться 2 калиброванными линейками.

Таблица 6:

Кронштейн для подшипника	A +/- 0,05
1	6
2	10
3	16,75

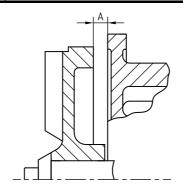


Рисунок 17: Регулировка крыльчатки FRES.

- Плотно прижмите линейки к крыльчатке и затяните установочные винты (2280).
- 4 Для двигателей начиная с IEC 112 и выше, отметьте точку сверления на валу двигателя в свободном резьбовом отверстии втулочного вала, вставьте второй установочный винт, воспользовавшись Loctite 243. Правильно затяните оба установочных винта.

7.10 FREF

7.10.1 Сборка двигателя

- 1 Поставьте двигатель вертикально, так чтобы вал был направлен вверх.
- 2 Установите проставочное кольцо (0250) на двигатель с помощью болтов (0850) и гаек (0900).

7.11 FREM

7.11.1 Сборка двигателя

- 1 Убедитесь в том, что осевой зазор вала двигателя не превышает 0,3 мм.
- 2 Поставьте двигатель вертикально, так чтобы вал был направлен вверх.
- 3 Нанесите на конец вала двигателя немного Loctite 648. Никогда не используйте быстросохнущий Loctite!
- 4 Установите втулочный вал (2200) на вал двигателя. Проверьте, чтобы отверстие под установочный винт соответствовало шпоночной канавке вала двигателя.
- 5 Установите установочный винт (2280) с помощью Loctite 243, но не затягивайте его.
- 6 Установите проставочное кольцо (0250) на двигатель с помощью болтов (0850) и гаек (0900).

7.11.2 Регулировка крыльчатки

- 1 Установите промежуточную крышку (0110), механическое уплотнение (1220) и крыльчатку (0120).
- Отрегулируйте крыльчатку до размера **А** между задней частью крыльчатки и промежуточной крышкой. См. рисунок 18 и Таблица 7 ниже.
 Предпочтительно воспользоваться 2 калиброванными линейками.

Таблица 7:

Кронштейн для подшипника	A +/- 0,05
1	6
2	10

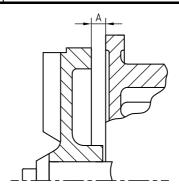


Рисунок 18: Регулировка крыльчатки FREM.

3 Плотно прижмите линейки к крыльчатке и затяните установочные винты (2280).

8 Размеры

8.1 FRE - группы подшипников 1, 2 и 3

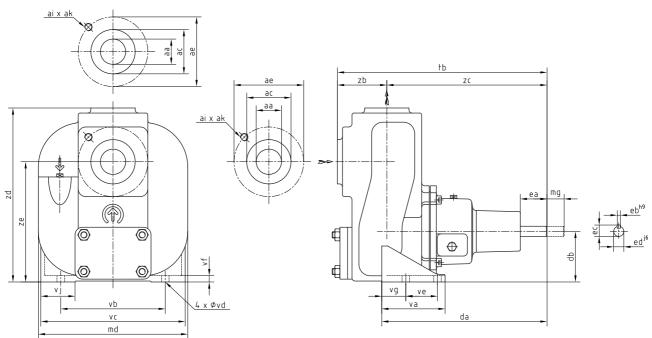


Рисунок 19: FRE - группы подшипников 1, 2 и 3.

FRE	aa	ac	ae	ai	ak	da	db	ea	eb	ec	ed	md	мд
32-110	Rp 1¼	-	-	-	-	256	80	40	5	18	16	236	35
32-150	Rp 11/4	-	-	-	-	297	100	50	8	27	24	235	45
40-110	Rp 1½	-	-	-	-	261	80	40	5	18	16	244	35
40-170	Rp 1½	-	-	-	-	380	160	60	8	31	28	314	80
50-125b	Rp 2(*)	100	125	4	M16	311	100	50	8	27	24	280	45
50-125	Rp 2(*)	100	125	4	M16	311	100	50	8	27	24	280	45
50-205	Rp 2	100	125	4	M16	394	160	60	8	31	28	318	80
65-135b	65	120	145	4	M16	318	112	50	8	27	24	268	50
65-135	65	120	145	4	M16	318	112	50	8	27	24	268	50
65-155	65	120	145	4	M16	318	132	50	8	27	24	308	50
65-230	65	120	145	4	M16	400	160	60	8	31	28	368	80
80-140	80	135	160	8	M16	337	132	50	8	27	24	312	50
80-170	80	135	160	8	M16	416	160	60	8	31	28	368	80
100-225b	100	155	180	8	M16	457	200	60	8	31	28	452	100
100-225	100	155	180	8	M16	457	200	60	8	31	28	452	100

(*) R6 : aa=50 мм

аа \geq 50: Соединения по ISO 7005 PN 16

				- ''										
FRE	tb	va	vb	VC	vd	ve	vf	vg	vj	zb	ZC	zd	ze	[кг]
32-110	321	100	165	228	12	50	10	38	54	73	248	270	185	20
32-150	362	91	190	240	12	40	12	36	75	73	289	300	205	30
40-110	331	100	165	228	12	50	10	38	54	78	253	275	190	22
40-170	448	111	222	292	14	50	15	46	91	78	370	394	285	60
50-125b	403	110	190	260	14	60	12	38	63	100	303	330	220	40
50-125	403	110	190	260	14	60	12	38	63	100	303	330	220	40
50-205	489	122	230	310	14	60	15	51	92	105	384	440	300	80
65-135b	417	116	190	260	14	60	12	41	75	107	310	365	252	45
65-135	417	116	190	260	14	60	12	41	75	107	310	365	252	45
65-155	417	112	212	292	14	70	12	27	83	107	310	395	282	52
65-230	505	128	250	356	14	60	15	53	108	115	390	475	325	90
80-140	455	136	212	292	14	80	12	41	79	126	329	410	282	62
80-170	533	143	250	360	14	80	15	48	115	127	406	470	340	100
100-225b	603	171	315	440	14	100	15	51	125	156	447	595	430	145
100-225	603	171	315	440	14	100	15	51	125	156	447	595	430	145

8.2 FRE - группа подшипников 4

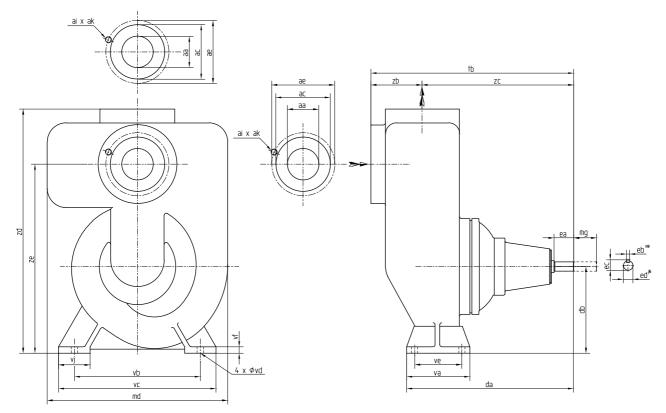


Рисунок 20: FRE - группа подшипников 4.

FRE	aa	ac	ae	ai	ak	da	db	ea	eb	ес	ed	md	мд
80-210	80	138	160	8	M16	424	220	50	8	27	24	458	90
100-250	100	158	180	8	M16	524	280	80	10	35	32	520	110
150-290b	150	212	240	8	M20	615	250	110	12	45	42	520	120
150-290	150	212	240	8	M20	615	250	110	12	45	42	520	120

Соединения по ISO 7005 PN 16

FRE	tb	va	vb	VC	vd	ve	vf	vj	zb	ZC	zd	ze	[кг]
80-210	515	160	320	400	18	120	16	80	130	385	620	480	130
100-250	640	160	315	400	18	120	18	80	145	495	730	590	150
150-290b	768,5	200	400	490	22	150	22	95	185,5	583	715	540	270
150-290	768,5	200	400	490	22	150	22	95	185,5	583	715	540	270

8.3 FRE с соединениями по ISO 7005 PN20

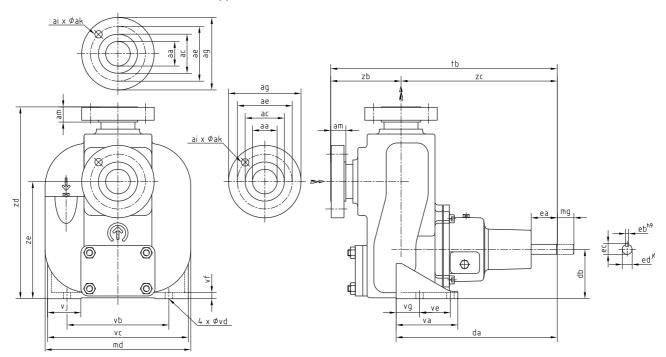


Рисунок 21: FRE с соединениями по ISO 7005 PN20.

FRE	aa	ac	ae	ag	ai	ak	am	da	db	ea	eb	ес	ed	md	мд
32-110	32	63,5	88,9	117,5	4	16	20,6	256	80	40	5	18	16	236	35
32-150	32	63,5	88,9	117,5	4	16	20,6	297	100	50	8	27	24	235	45
40-110	40	73	98,4	127	4	16	22,2	261	80	40	5	18	16	244	35
40-170	40	73	98,4	127	4	16	22,2	380	160	60	8	31	28	314	80

FRE	tb	va	vb	vc	vd	ve	vf	vg	νj	zb	ZC	zd	ze	[кг]
32-110	356	100	165	228	12	50	10	38	54	108	248	305	185	23
32-150	397	91	190	240	12	40	12	36	75	108	289	335	205	33
40-110	366	100	165	228	12	50	10	38	54	113	253	310	190	26
40-170	483	111	222	292	14	50	15	46	91	113	370	429	285	64

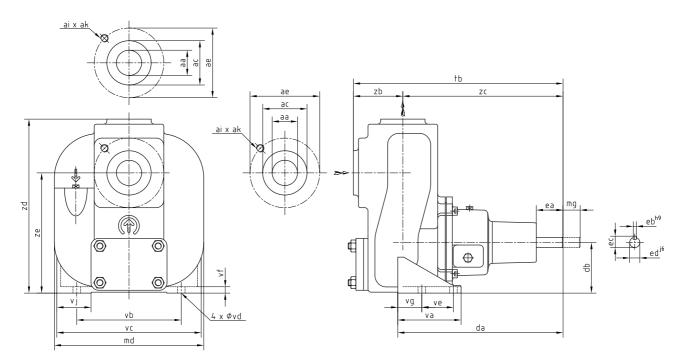


Рисунок 22: FRE с соединениями по ISO 7005 PN20.

FRE	aa	ac	ae	ai	ak	da	db	ea	eb	ес	ed	md	мд
50-125b	50	100	120,7(*)	4	M16	311	100	50	8	27	24	280	45
50-125	50	100	120,7(*)	4	M16	311	100	50	8	27	24	280	45
50-205	50	100	120,7(*)	4	M16	394	160	60	8	31	28	318	80
65-135b	65	120	139,7(*)	4	M16	318	112	50	8	27	24	268	50
65-135	65	120	139,7(*)	4	M16	318	112	50	8	27	24	268	50
65-155	65	120	139,7(*)	4	M16	318	132	50	8	27	24	308	50
65-230	65	120	139,7(*)	4	M16	400	160	60	8	31	28	368	80
100-225b	100	160	190,5	8	M16	457	200	60	8	31	28	452	100
100-225	100	160	190,5	8	M16	457	200	60	8	31	28	452	100

(*) ae = в соответствии с PN20 + 0,2 мм

FRE	tb	va	vb	vc	vd	ve	vf	vg	vj	zb	zc	zd	ze	[кг]
50-125b	403	110	190	260	14	60	12	38	63	100	303	330	220	40
50-125	403	110	190	260	14	60	12	38	63	100	303	330	220	40
50-205	489	122	230	310	14	60	15	51	92	105	384	440	300	80
65-135b	417	116	190	260	14	60	12	41	75	107	310	365	252	45
65-135	417	116	190	260	14	60	12	41	75	107	310	365	252	45
65-155	417	112	212	292	14	70	12	27	83	107	310	395	282	52
65-230	505	128	250	356	14	60	15	53	108	115	390	475	325	90
100-225b	603	171	315	440	14	100	15	51	125	156	447	595	430	145
100-225	603	171	315	440	14	100	15	51	125	156	447	595	430	145

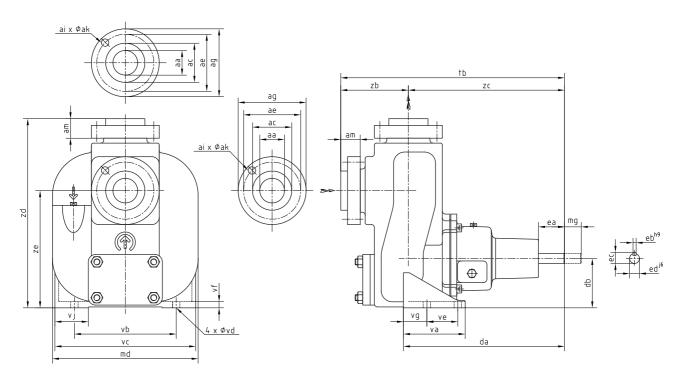


Рисунок 23: FRE с соединениями по ISO 7005 PN20.

FRE	aa	ac	ae	ag	ai	ak	am	da	db	ea	eb	ес	ed	md	мд
80-140	80	135	152,5	192	4	M16	40	337	132	50	8	27	24	312	50
80-170	80	135	152,5	192	4	M16	40	416	160	60	8	31	28	368	80

FRE	tb	va	vb	VC	vd	ve	vf	vg	vj	zb	ZC	zd	ze	[кг]
80-140	495	136	212	292	14	80	12	41	79	166	329	450	282	70
80-170	573	143	250	360	14	80	15	48	115	167	406	510	340	108

8.4 FRE - насосный агрегат A6

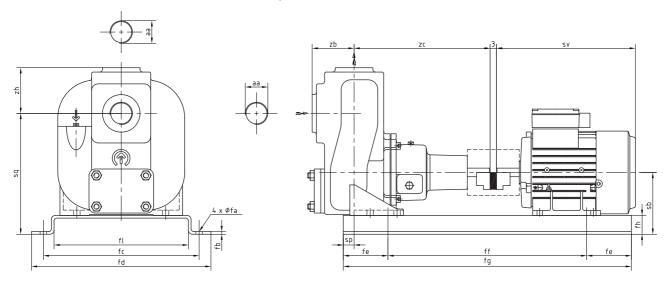


Рисунок 24: FRE - насосный агрегат A6.

								IEC-	электр	одвига	тель		
						71	80	90 S	90 L	100 L	112 M	132 S	132 M
FRE	aa	zb	zc	zh	sv ^(*)	254	296	336	345	402	432	486	520
					sb		115						
32-110	Rp 11/4	73	248	85	sp		17						
32-110	πρ 1/4	73	240	00	sq		220						
					Х		2						
					sb	135	135	135	135	135	147		
32-150	Rp 1¼	73	289	95	sp	17	17	17	17	17	17		
32-130	Ιζρ 1/4	73	209	93	sq	240	240	240	240	240	252		
					Х	2	2	2	2	2	2		
					sb	115	115	125	125				
40-110	Rp 1½	78	253	85	sp	17	17	17	17				
40-110	1λρ 1/2	70	233	00	sq	225	225	235	235				
					Х	2	2	2	2				
					sb		205	205	205	205	205	205	
40-170	Rp 1½	78	370	109	sp		19	19	19	19	19	19	
40-170	1 γ 1 /2	70	370	108	sq		330	330	330	330	330	330	
					Χ		3	3	3	3	3	3	

(*) длина двигателя, соответствующая стандарту DIN 42673, может отличаться из-за исполнения применяемого двигателя

опорная плита № Х	fa	fb	fc	fd	fe	ff	fg	fh	В
2	15	5	340	384	90	450	630	35	275
3	19	6	385	433	120	560	800	45	305

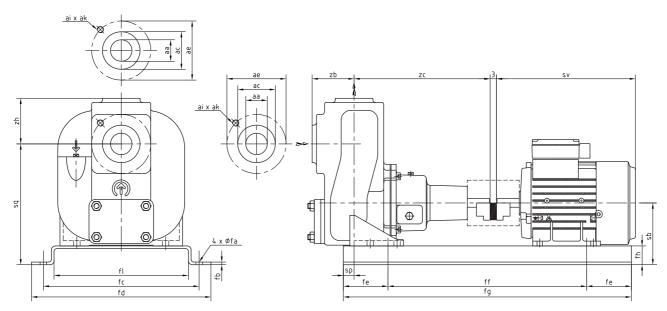


Рисунок 25: FRE - насосный агрегат A6.

												IEC-	элек	грод	вигат	гель		
										71	80	90 S	90 L	100 L	112 M	132 S	132 M	160 M
FRE	aa	ac	ae	ai	ak	zb	zc	zh	sv ^(*)	254	296	336	345	402	432	486	520	652
									sb	135		135	135					
50-125b	25b Rp2(**) 100 125 4 M16 100 30				303	110	sp	17		17	17							
30-1230	πρ2()	100	125	_	WITO TOU S		303	110	sq	255		255	255					
									Χ	2		2	2					
									sb	135	135		135	135	157			
50-125	Rp2(**)	100	125	4	M16	100	303	110	sp	17	17		17	17	17			
30-123	πρ2()	100	120	7	IVITO	100	000	110	sq	255	255		255	255	277			
									Χ	2	2		2	2	3			
									sb				216	216				216
50-205	Rp2	100	125	4	M16	105	384	140	sp				19	19				19
50-205	ΤΥΡΖ	100	120	-7	10110	100	004	140	sq				356	356				356
									Χ	·			4	4				4

(*) длина двигателя, соответствующая стандарту DIN 42673, может отличаться из-за исполнения применяемого двигателя

(**) R6 : aa=50 мм

опорная плита № Х	fa	fb	fc	fd	fe	ff	fg	fh	В
2	15	5	340	384	90	450	630	35	275
3	19	6	385	433	120	560	800	45	305
4	19	6	425	473	135	630	900	56	345

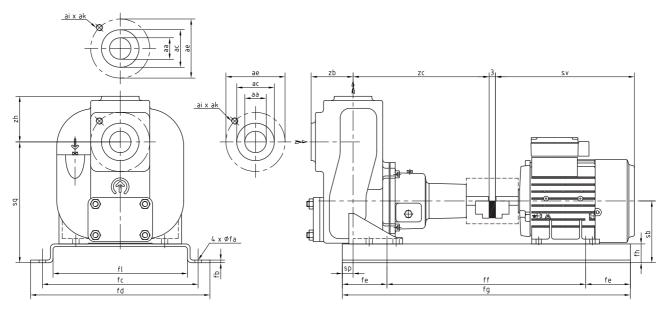


Рисунок 26: FRE - насосный агрегат A6.

												IEC	-элек	троді	вигат	ель		
										80	90 S	90 L	100 L	112 M	132 S	132 M	160 M	160 L
FRE	aa	ac	ae	ai	ak	zb	zc	zh	sv ^(*)	296	336	345	402	432	486	520	652	672
									sb	147			157	157	177			
65-135b	65	120	145	4	M16	107	310	113	sp	17			17	17	17			
00-1000	00	120	145	_	IVITO	107	310	113	sq	287			297	297	317			
									Χ	2			3	3	3			
						107 210		sb	147				157	177				
65-135	65	120	145	4	M16	107 310	113	sp	17				17	17				
03-133	03	120	143	7	IVITO	107 310	310	113	sq	287				297	317			
								Х	2				3	3				
									sb	177	177	177			177			
65-155	65	120	145	4	M16	107	310	113	sp	17	17	17			17			
03-133	03	120	143	7	IVITO	107	310	113	sq	327	327	327			327			
									Х	3	3	3			3			
									sb				223	223				223
65-230	65	120	145	4	M16	115	5 390	150	sp				19	19				19
05-250	00	120	143	4	IVI IO	113	390	150	sq				388	388				388
									Χ				6	6				6

(*) длина двигателя, соответствующая стандарту DIN 42673, может отличаться из-за исполнения применяемого двигателя

Соединения по ISO 7005 PN 16

опорная плита № X	fa	fb	fc	fd	fe	ff	fg	fh	В
2	15	5	340	384	90	450	630	35	275
3	19	6	385	433	120	560	800	45	305
6	19	8	475	525	145	710	1000	63	385

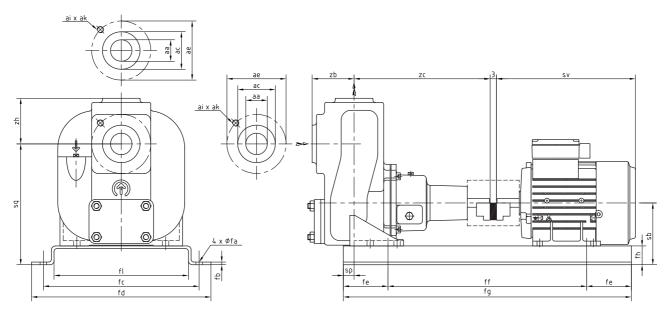


Рисунок 27: FRE - насосный агрегат A6.

												ІЕС-э	пектр	одвиг	атель	1	
										80	90 S	90 L	100 L	112 M	132 S	132 M	160 M
FRE	aa	ac	ae	ai	ak	zb	zc	zh	sv ^(*)	269	336	345	402	432	486	520	652
									sb	177	177			177	177		
80-140	80	135	160	8	M16	126	329	128	sp	17	17			17	17		
00-140	00	100	100	U	IVITO	120	323	120	sq	327	327			327	327		
									Х	3	3			3	3		
							407 400		sb		223	223	223		223		223
80-170	80	135	160	8	M16	127 406	130	sp		19	19	19		19		19	
00-170	00	100	100	U	IVITO		130	sq		403	403	403		403		403	
								Х		6	6	6		6		6	
									sb					290	290	290	
100-225b	100	155	180	8	M16	156	447	165	sp					19	19	19	
100-2235	100	100	100	U	IVITO	130	777	103	sq					520	520	520	
									Х					7	7	7	
									sb				290	290	290		290
100-225	100	155	180	8	M16	156	66 447	165	sp				19	19	19		19
100-223	100	100	100	J	IVITO	130	747	103	sq				520	520	520		520
									Х				7	7	7		7

(*) длина двигателя, соответствующая стандарту DIN 42673, может отличаться из-за исполнения применяемого двигателя

Соединения по ISO 7005 PN 16

опорная плита № X	fa	fb	fc	fd	fe	ff	fg	fh	В
3	19	6	385	433	120	560	800	45	305
6	19	8	475	525	145	710	1000	63	385
7	24	10	610	678	175	900	1250	90	500

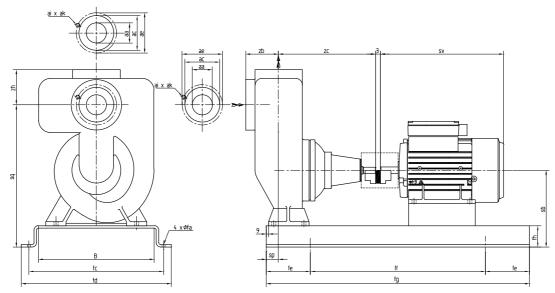


Рисунок 28: FRE - насосный агрегат A6.

											IEC-:	электро	одвига	тель	
										112 M	132 S	132 M	160 M	180 M	200 L
FRE	aa	ac	ae	ai	ak	zb	zc	zh	sv ^(*)	432	486	520	652	712	790
									sb	300	300				
80-210	80	138	160	8	M16	130	385	140	sp	48	48				
00-210	00	100	100	U	IVITO	100	000	140	sq	560	560				
									Χ	5	5				
									sb			360	360		
100-250	100	158	180	8	M16	145	495	140	sp			38	38		
100-230	100	130	100	U	IVITO	143	433	140	sq			670	670		
									Χ			5	5		
									sb				340	340	
150-290b	150	212	240	8	M20	185	583	175	sp				41	41	
130-2300	130	212	240	U	IVIZO	100	303	173	sq				630	630	
									Χ				7	7	
									sb					340	340
150-290	150	212	240	8	M20	185	583	175	sp					41	41
130-230	130	212	240	0	IVIZU	100	505	173	sq					630	630
									Χ					7	7

(*) длина двигателя, соответствующая стандарту DIN 42673, может отличаться из-за исполнения применяемого двигателя

Соединения по ISO 7005 PN 16

опорная плита № X	fa	fb	fc	fd	fe	ff	fg	fh	В
5	24	10	535	595	175	900	1250	80	425
6	19	8	475	525	145	710	1000	63	385
7	24	10	610	678	175	900	1250	90	500

8.5 FRE - насосный агрегат A6, с соединениями по ISO 7005 PN20

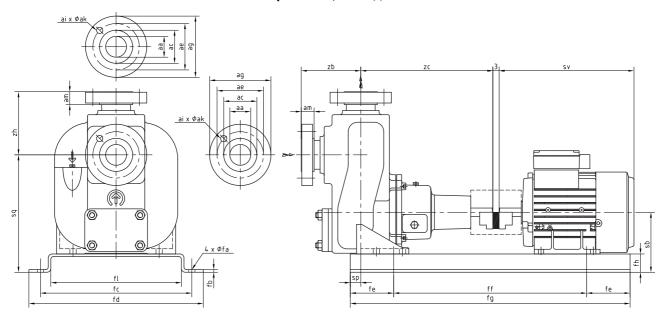


Рисунок 29: FRE - насосный агрегат A6 с соединениями по ISO 7005 PN20.

													ΙE	С-эл	ектр	одви	гате	ПЬ	
												71	80	90 S	90 L	100 L	112 M	132 S	132 M
FRE	aa	ac	ae	ag	ai	ak	am	zb	zc	zh	sv ^(*)	254	296	336	345	402	432	486	520
											sb		115						
32-110	32	63.5	88,9	117,5	4	16	20,6	108	248	120	sp		17						
02 110	02	00,0	00,0	117,0	7	10	20,0	100	240	120	sq		220						
											Χ		2						
											sb	135	135	135	135	135	147		
32-150	32	63 5	88 9	117,5	4	16	20,6	108	289	130	sp	17	17	17	17	17	17		
02 .00	-	00,0	00,0	,0	•		20,0				sq	240		240	240	240	252		
											Х	2	2	2	2	2	2		
											sb	115		125					
40-110	40	73	98,4	127	4	16	22,2	113	253	120	sp	17	17	17	17				
10 110	.0	, 0	00, 1	121	•		,_	' ' '	200	120	sq	225	225	235	235				
											Х	2	2	2	2				
											sb		205	205			205		
40-170	40	73	98,4	127	4	16	22,2	113	370	144	sp		19	19	19	19	19	19	
10 170	.0	. 0	00,4	121	r	.0	,_		0,0		sq		330	330	330	330	330	330	
											Χ		3	3	3	3	3	3	

(*) длина двигателя, соответствующая стандарту DIN 42673, может отличаться из-за исполнения применяемого двигателя

опорная плита № X	fa	fb	fc	fd	fe	ff	fg	fh	В
2	15	5	340	384	90	450	630	35	275
3	19	6	385	433	120	560	800	45	305

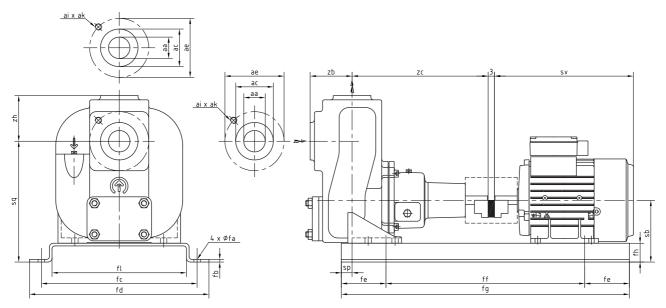


Рисунок 30: FRE - насосный агрегат A6 с соединениями по ISO 7005 PN20.

												IEC-	-элек	троді	вигат	ель		
										71	80	90 S	90 L	100 L	112 M	132 S	132 M	160 M
FRE	aa	ac	ae (*)	ai	ak	zb	zc	zh	sv ^(**)	254	296	336	345	402	432	486	520	652
									sb	135		135	135					
50-125b	50	100	120,7	4	M16	100	303	110	sp	17		17	17					
30-1230	30	100	120,1	-	IVITO	100	303	110	sq	255		255	255					
									Х	2		2	2					
									sb	135	135		135	135	157			
50-125	50	100	120,7	4	M16	100	303	110	sp	17	17		17	17	17			
30-123	30	100	120,1	-	IVITO	100	303	110	sq	255	255		255	255	277			
									Х	2	2		2	2	3			
									sb				216	216				216
50-205	50	100	120,7	4	M16	105	384	140	sp				19	19				19
30-203	30	100	120,1	-	IVITO	103	304	140	sq				356	356				356
									Χ				4	4				4

^(*) ae = в соответствии с PN20 + 0,2 мм

Размеры опорной плиты [мм]

опорная плита № Х	fa	fb	fc	fd	fe	ff	fg	fh	В
2	15	5	340	384	90	450	630	35	275
3	19	6	385	433	120	560	800	45	305
4	19	6	425	473	135	630	900	56	345

^(**) длина двигателя, соответствующая стандарту DIN 42673, может отличаться из-за исполнения применяемого двигателя

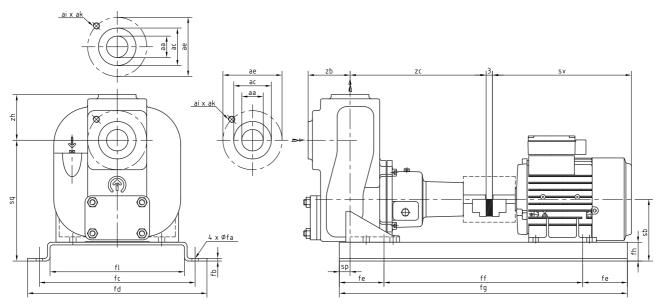


Рисунок 31: FRE - насосный агрегат A6 с соединениями по ISO 7005 PN20.

												IEC-	-элек	троді	вигат	ель		
										80	90 S	90 L	100 L	112 M	132 S	132 M	160 M	160 L
FRE	aa	ac	ae (*)	ai	ak	zb	zc	zh	sv ^(**)	296	336	345	402	432	486	520	652	672
									sb	147			157	157	177			
65-135b	65	120	139,7	4	M16	107	310	113	sp	17			17	17	17			
03-1000	03	120	100,1	7	IVITO	107	310	113	sq	287			297	297	317			
									Х	2			3	3	3			
									sb	147				157	177			
65-135	65	120	139,7	4	M16	107	310	113	sp	17				17	17			
00-100	00	120	100,7		IVITO	107	010	110	sq	287				297	317			
									X	2				3	3			
									sb	177	177	177			177			
65-155	65	120	139,7	4	M16	107	310	113	sp	170	17	17			17			
00 100	00	120	100,7	-	IVIIO	107	0.0	110	sq	327	327	327			327			
									Х	3	3	3			3			
									sb				223	223				223
65-230	65	120	139,7	4	M16	115	390	150	sp				19	19				19
30 200	50	120	100,1	7		110	300	100	sq				388	388				388
									Χ				6	6				6

^(*) ae = в соответствии с PN20 + 0,2 мм

Размеры опорной плиты [мм]

опорная плита № X	fa	fb	fc	fd	fe	ff	fg	fh	В
2	15	5	340	384	90	450	630	35	275
3	19	6	385	433	120	560	800	45	305
6	19	8	475	525	145	710	1000	63	385

^(**) длина двигателя, соответствующая стандарту DIN 42673, может отличаться из-за исполнения применяемого двигателя

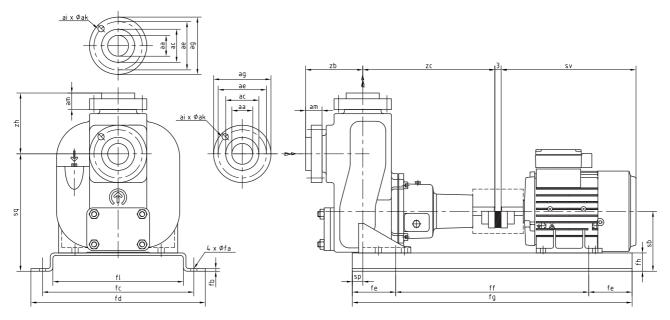


Рисунок 32: FRE - насосный агрегат A6 с соединениями по ISO 7005 PN20.

													ΙE	С-эл	ектр	одви	гател	ΠЬ	
												80	90	90	100	112	132	132	160
												00	S	L	L	M	S	M	M
FRE	aa	ac	ae	ag	ai	ak	am	zb	ZC	zh	sv ^(*)	296	336	345	402	432	486	520	652
											sb	177	177			177	177		
80-140	80	135	152,5	192	4	M16	40	168	329	170	sp	17	17			17	17		
00-140	00	100	102,0	132	_	IVITO	+0	100	323	170	sq	327	327			327	327		
											Χ	3	3			3	3		
											sb		223	223	223		223		223
80-170	80	135	152,5	192	4	M16	40	169	406	172	sp		19	19	19		19		19
00-170	00	100	102,0	132	7	IVITO	70	103	700	172	sq		403	403	403		403		403
											Χ		6	6	6		6		6

(*) длина двигателя, соответствующая стандарту DIN 42673, может отличаться из-за исполнения применяемого двигателя

опорная плита № Х	fa	fb	fc	fd	fe	ff	fg	fh	В
3	19	6	385	433	120	560	800	45	305
6	19	8	475	525	145	710	1000	63	385

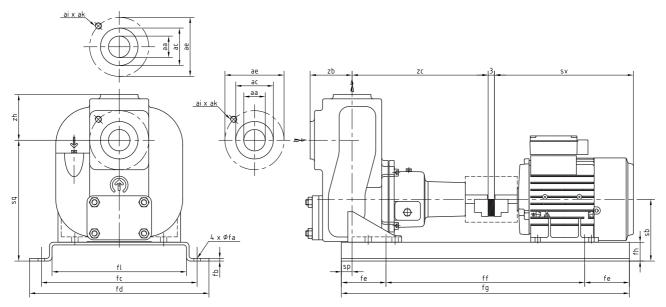
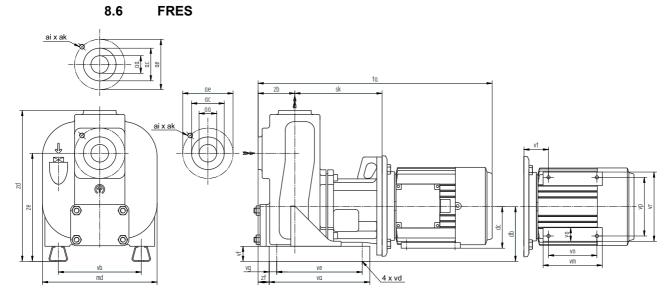



Рисунок 33: FRE - насосный агрегат A6 с соединениями по ISO 7005 PN20.

											I	ЕС-эг	ектр	одвиг	ател	Ь	
										80	90 S	90 L	100 L	112 M	132 S	132 M	160 M
FRE	aa	ac	ae	ai	ak	zb	zc	zh	sv ^(*)	296	336	345	402	432	486	520	652
									sb					290	290	290	
100-225b	100	160	190,5	8	M16	156	447	165	sp					19	19	19	
100-2255	100	100	130,5	U	IVITO	150	771	103	sq					520	520	520	
									Х					7	7	7	
									sb				290	290	290		290
100-225	100	160	190,5	8	M16	156	447	165	sp				19	19	19		19
100-225	100	100	100,0	3	IVITO	130	7-71	100	sq				520	520	520		520
									Х				7	7	7		7

^(*) длина двигателя, соответствующая стандарту DIN 42673, может отличаться из-за исполнения применяемого двигателя

опорная плита № Х	fa	fb	fc	fd	fe	ff	fg	fh	В
7	24	10	610	678	175	900	1250	90	500

Pucyнoк 34: FRES.

FRES	IEC-электродвигатель	aa	ac	ae	ai	ak	db	dc	md	sk	ta(**)
32-110	80-F165	Rp 11/4	-	-	-	-	110	-	236	173	532
	90S-F165									200	581
32-150	90L-F165	Rp 1¼	_	_	_	_	130	-	235	200	605
32-130	100L-F215	1ζρ 1/4	_	-	_	_	130	_	233	212	651
	112M-F215									212	677
40-110	80-F165	Rp 1½	-	-	-	-	110	-	244	178	542
	100L-F215						190	_		236	680
40-170	112M-F215	Rp 1½	_	_	_	_	100		314	200	706
40-170	132S-F265	πρ 1/2	_	_			180	132	314	264	792
	132M-F265						100	102		204	830
	90S-F165									214	622
50-125b	90L-F165	Rp 2	100	125	4	M16	130	_	280	217	646
30-1235	100L-F215	(*)	100	120	7	IVITO	130	_	200	226	692
	112M-F215									220	718
	90S-F165									214	622
50-125	90L-F165	Rp 2	100	125	4	M16	130	-	280	217	646
00-120	100L-F215	(*)	100	120	7	IVITO	100		200	226	692
	112M-F215									220	718
50-205	160M-F300	Rp 2	100	125	4	M16	180	160	318	311	964
00-200	160L-F300	TQ Z	100	120	۲	IVITO	100	100	010	011	1008
	100L-F215						142	_		235	708
65-135b	112M-F215	65	120	145	4	M16	172	_	268	200	734
00-1000	132S-F265	00	120	170	7	IVITO	132	132	200	261	818
	132M-F265						102	102		201	856
	100L-F215						142	_		235	708
65-135	112M-F215	65	120	145	4	M16	172		268	200	734
00-100	132S-F265	00	120	170	7	IVITO	132	132	268	261	818
	132M-F265						102	102		201	856
	90S-F165						162			221	636
65-155	90L-F165	65	120	145	4	M16	102		308	221	660
00-100	132S-F265	00	120	170	7	IVITO	152	132	300	259	816
	132M-F265						132	102		200	854

FRES	IEC-электродвигатель	aa	ac	ae	ai	ak	db	dc	md	sk	ta(**)
65-230	160M-F300	65	120	145	4	M16	180	160	368	319	982
	160L-F300										1026
80-140	90S-F165	80	135	160	8	M16	162		312	240	674
	90L-F165										698
	100L-F215									252	744
	112M-F215										770
	132S-F265						152	132		278	854
	132M-F265										892
80-170	160M-F300	80	135	160	8	M16	180	160	370	334	1009
	160L-F300										1053
100-225b	100L-F215	100	155	180	8	M16	220	-	452	308	830
	112M-F215										856
	132S-F265							132		336	942
	132M-F265										980
100-225	100L-F215	100	155	180	8	M16	220	-	452	308	830
	112M-F215										856
	132S-F265							132		336	942
	132M-F265										980

aa ≥ 50: Соединения по ISO 7005 PN 16

^(*) R6 : aa = 50

^(**) длина двигателя, соответствующая стандарту DIN 42677, может отличаться из-за исполнения применяемого двигателя

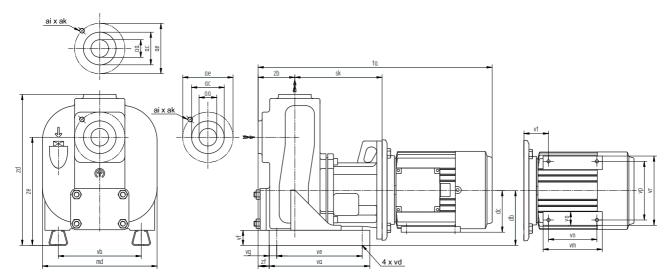


Рисунок 35: FRES.

FRES	IEC-электродвигатель	va	vb	vd	ve	vf	vg	vm ⁽¹⁾	vn	νp	vr ⁽¹⁾	vs	vt ⁽¹⁾	zb	zd	ze	zf	[кг]
32-110	80-F165	200	165	12	170			-	-	-	-	-	-	73	300	215	22	40
	90S-F165	225			195													55
22.450	90L-F165	225	190	10			15							73	220	235	22	60
32-150	100L-F215	275	190	12	245		15	-	-	-	-	-	-	13	330	235	22	75
	112M-F215	2/5			245													85
40-110	80-F165	200	165	12	170	30	15	-	-	-	-	-	-	78	305	220	22	40
	100L-F215	275		12	245	30	15								121	315	22	100
40-170	112M-F215	213	222	12	243	30	13	-	_	_	-	_	_	78	424	313	22	110
40-170	132S-F265	330	222	1/	200	20	20	224	178	216	270	12	89	70	111	305	25	145
	132M-F265	330		14	200	20	20	22 4	176	210	210	12	09		414	303	23	155
	90S-F165	225			195													65
50-125b	90L-F165	223	190	12			15							100	360	250	35	70
30-1230	100L-F215	275	190	12	245	30	13	-	_	_	-	_	_	100	300	230	33	90
	112M-F215	213			243													95
	90S-F165	225			195													65
50-125	90L-F165	223	190	12		30	15							100	360	250	35	70
30-123	100L-F215	275	190	12	245		13	-	_	_	-	_	_	100	300	230	33	90
	112M-F215	213			243													95
50-205	160M-F300	440	230	1/	200	20	20		210	254	314	14,5	100	105	460	320	35	220
30-203	160L-F300	440	230	14	200	20	20		254	254	314	14,5	100	103	400	320	33	230
	100L-F215	275		12	245	30	15	_			_	_	_		305	282		80
65-135b	112M-F215	213	190	12	243	30	13	-	_	_	_	_	_	107		202	35	90
00-1000	132S-F265	310	190	1/	200	20	20	220	140	216	270	12	89	107		292		140
	132M-F265	310		14	200	20	20	220	178	210	210	12	09		403	292		150
	100L-F215	275		12	245	30	15								305	282		80
65-135	112M-F215	213	190	12	243	30	13	_	_	_	-	_	-	107		202	35	90
00-100	132S-F265	310	190	1/	200	20	20	220	140	216	270	12	89	107		292		140
	132M-F265	310		14	200	20	20	220	178	210	270	12	09		403	292		150

FRES	IEC-электродвигатель	va	vb	vd	ve	vf	vg	vm ⁽¹⁾	vn	νp	vr ⁽¹⁾	vs	vt ⁽¹⁾	zb	zd	ze	zf	[кг]
65-155	90S-F165 90L-F165	275	212	12	245	30	15	-	-	-	-	-	-	107	425	312	35	75 80
03-133	132S-F265 132M-F265	330	212	14	200	20	20	186 224	140 178	216	270	12	89	107	415	302	00	145 155
65-230	160M-F300 160L-F300	480	250	14	250	20	30	304	210 254	254	314	14,5	108	115	495	345	8	225 235
	90S-F165 90L-F165 100L-F215	275		12	245	30	15	,	,	•	-	-	-		440	312	35	90 95 110
80-140	112M-F215 132S-F265	500	212	14	250	20	30	224	178	216	270	12	89	126	430	302	20	120 150
80-170	132M-F265 160M-F300 160L-F300		250		250			260	210 254		314	14,5	108	127	490			160 230 240
100-225b	100L-F215 112M-F215	500	315	14	320	20	30	1	•	-	-	-	-	156	615	450	37	180 190
.000.0	132S-F265 132M-F265				525			220	140 178	216	266	12	89		0.0			240 250
100-225	100L-F215 112M-F215 132S-F265	500	315	14	320	20	30	-	- 140	-	-	-	-	156	615	450		180 190 240
	132M-F265							220	178	216	270	12	89				37	250

⁽¹⁾ Опоры электродвигателя, на основе стандартного электродвигателя, могут быть разными в зависимости от исполнения применяемого электродвигателя.

8.7 FRES с соединениями по ISO 7005 PN20

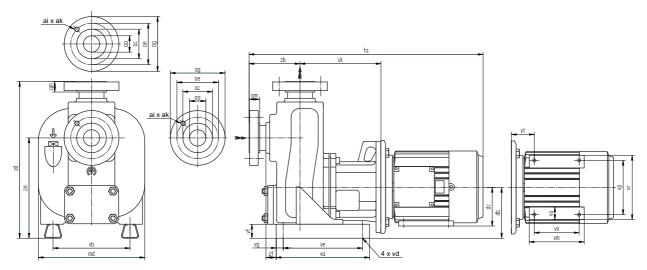


Рисунок 36: FRES с соединениями по ISO 7005 PN20.

FRES	IEC-электродвигатель	aa	ac	ae	ag	ai	ak	am	db	dc	md	sk	ta(*)
32-110	80-F165	32	63,5	88,9	117,5	4	M16	20,6	110	-	236	173	567
	90S-F165									-		200	616
32-150	90L-F165	32	63.5	88,9	117.5	4	M16	20.6	130	-	235	200	640
32-130	100L-F215	32	05,5	00,9	117,5	-	IVITO	20,0	130	-	233	212	686
	112M-F215									-		212	712
40-110	80-F165	40	73	98,4	127	4	M16	22,2	110	-	244	178	577
	100L-F215								190	-		236	715
40-170	112M-F215	40	73	98.4	127	4	M16	22,2	130	-	314	230	741
-1 0-170	132S-F265	70	73	30,4	121	-	IVITO	22,2	180	132	314	264	827
	132M-F265								100	132		204	865

(*) длина двигателя, соответствующая стандарту DIN 42677, может отличаться из-за исполнения применяемого двигателя

FRES	IEC-электродвигатель	va	vb	vd	ve	vf	vg	vm ⁽¹⁾	vn	vp	vr ⁽¹⁾	vs	vt ⁽¹⁾	zb	zd	ze	zf	[кг]
32-110	80-F165	200	165	12	170	30	15	-	-	-		-	-	108	335	215	22	50
	90S-F165	225			195													65
32-150	90L-F165	223	190	12	193	30	15		_	_	_	_	_	108	365	235	22	70
32-130	100L-F215	275	130	12	245	00	13	_		_	_			100	303	200		85
	112M-F215	213			47													95
40-110	80-F165	200	165	12	170	30	15	-	-	-	-	-	-	113	340	220	22	50
	100L-F215	275		12	245	30	15		_	_	_	_	_		150	315	22	110
40-170	112M-F215	213	222	12	240	30	13	_	_	_				113	700	010		120
40-170	132S-F265	330	222	14	200	20	20	220	140	216	266	12	89	113	449	305	25	155
	132M-F265	330		17	200	20	20	220	178	210	200	14	3		773	303	20	165

⁽¹⁾ Опоры электродвигателя, на основе стандартного электродвигателя, могут быть разными в зависимости от исполнения применяемого электродвигателя.

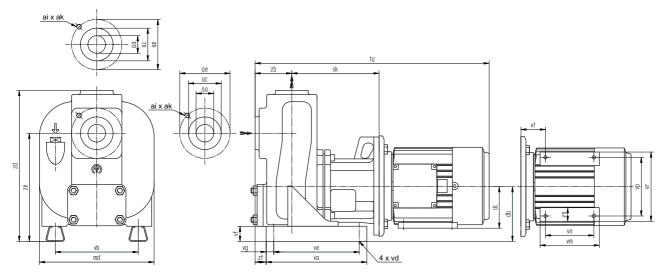


Рисунок 37: FRES с соединениями по ISO 7005 PN20.

FRES	IEC-электродвигатель	aa	ac	ae	ai	ak	db	dc	md	sk	ta (**)
	90S-F165										622
50-125b	90L-F165	50	100	120,7 (*)	4	M16	130	_	280	214	646
00-1200	100L-F215	00	100	120,7 ()	_	WITO	100		200	217	692
	112M-F215										718
	90S-F165									214	622
50-125	90L-F165	50	100	120,7 (*)	4	M16	130	_	280	217	646
00-120	100L-F215	00	100	120,7 ()	_	WITO	100		200	226	692
	112M-F215									220	718
50-205	160M-F300	50	100	120,7 (*)	4	M16	180	160	318	311	964
00-200	160L-F300	00	100	120,7 ()	7	WITO	100	100	010	011	
	100L-F215						142	_		235	708
65-135b	112M-F215	65	120	139,7 (*)	4	M16	172		268	200	734
00-1000	132S-F265	00	120	100,7 ()	_	WITO	152	132	200	261	818
	132M-F265						102	102		201	856
	100L-F215						142	_		235	708
65-135	112M-F215	65	120	139,7 (*)	4	M16	1 12		268	200	734
00 100	132S-F265		120	100,7 ()	•	10110	152	132	200	261	818
	132M-F265						102	102			856
	90S-F165						142	_		221	636
65-155	90L-F165	65	120	139,7 (*)	4	M16			308		660
00 .00	132S-F265			.00,. ()	•		152	132		259	816
	132M-F265						102	102			854
65-230	160M-F300	65	120	139,7 (*)	4	M16	180	160	368	319	1026
00 200	160L-F300	00	120	100,7 ()	•	10110	100	100	000	010	
	100L-F215							-		308	830
100-225b	112M-F215	100	155	190,5	8	M16	220		452		856
100 2200	132S-F265	100	100	100,0				132	102	336	942
	132M-F265							102		000	980
	100L-F215									308	830
100-225	112M-F215	100	155	190,5	8	M16	220	132	452		856
100-220	132S-F265	100	100	100,0		10110	220	102	702	336	942
	132M-F265									000	980

^(*) ae = в соответствии с PN20 + 0,2 мм

^(**) длина двигателя, соответствующая стандарту DIN 42677, может отличаться из-за исполнения применяемого двигателя

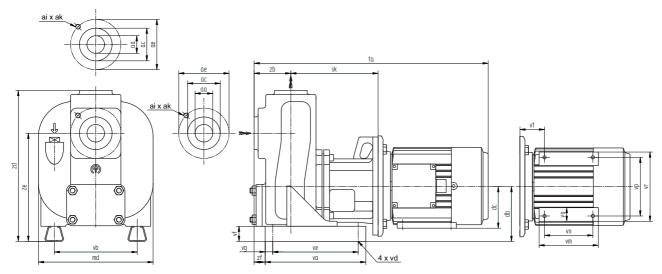


Рисунок 38: FRES с соединениями по ISO 7005 PN20.

FRES	IEC-электродвигатель	va	vb	vd	ve	vf	vg	vm ⁽¹⁾	vn	vp	vr ⁽¹⁾	vs	vt ⁽¹⁾	zb	zd	ze	zf	[кг]
	90S-F165	225			195													65
50-125b	90L-F165	223	190	12		30	15							100	360	250	25	70
30-1230	100L-F215	275	130	12	245	30	13	-	_	_	_	_	_	100	300	230	33	90
	112M-F215	213			243													95
	90S-F165	225			195													65
50-125	90L-F165	223	190	12			15	_	_	_	_	_	_	100	360	250	35	70
30-123	100L-F215	275	130	12	245	30	13	-	_	_	_	_	_	100	300	230	33	90
	112M-F215	213			243													95
50-205	160M-F300	440	230	1/	200	20	20	300	210	254	320	14,5	108	105	460	320	35	220
30-203	160L-F300	770	230	17	200	20	20	300	254	204	320	17,5	100	103	+00	320	3	230
	100L-F215	275		12	245	30	15	_	_		_	_	_		305	282		80
65-135b	112M-F215	210	190	12	243	30	13	_		_				107	030	202	35	90
00-1000	132S-F265	310	130	1/	200	20	20	220	140	216	266	12	89	107	385	272	55	140
	132M-F265	310		1-	200	20	20	220	178	210	200	12	03		303	212		150
	100L-F215	275		12	245	30	15	_			_	_	_		395	282		80
65-135	112M-F215	210	190	12	240	30	2	1						107	333	202	35	90
00-100	132S-F265	310	130	1/	200	20	20	220	140	216	266	12	89	107	105	292	55	140
	132M-F265	310		1-	200	20	20	220	178	210	200	12	03		700	232		150
	90S-F165	275		12	245	30	15	_		_	_	_	_		425	312		75
65-155	90L-F165	210	212	12	240	30	2	1						107	720	312	35	80
00-100	132S-F265	330	212	14	200	20	20	220	140	216	266	12	89	107	415	302	33	145
	132M-F265	000		17	200	20	2	220	178	2	20	12	00		710	002		155
65-230	160M-F300	480	250	14	250	20	30	300	210	254	320	14,5	108	115	495	345	40	225
00-200	160L-F300	100	200	17	200	20	00	000	254	201	020	14,0	100	110	430	040	70	235
	100L-F215							-	_	_		_	_					180
100-225b	112M-F215	500	315	14	320	20	30							156	615	450	37	190
100-2200	132S-F265		010	1-7	020	20	00	220	140	216	266	12	89	100	010	100	01	240
	132M-F265							220	178	210	200	12	00					250
	100L-F215									_	_	_	_					180
100-225	112M-F215	500	315	14	320	20	30							156	615	450	37	190
100-223	132S-F265		013	'	020	20	30	220	140	216	266	12	89	130	013	730	01	240
	132M-F265							220	178	210	200	12	03					250

⁽¹⁾ Опоры электродвигателя, на основе стандартного электродвигателя, могут быть разными в зависимости от исполнения применяемого электродвигателя.

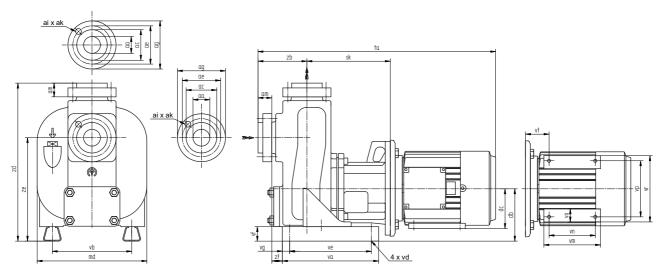


Рисунок 39: FRES с соединениями по ISO 7005 PN20.

FRES	IEC-электродвигатель	aa	ac	ae	ag	ai	ak	am	db	dc	md	sk	ta (*)
	90S-F165											240	716
	90L-F165								162	_		240	740
80-140	100L-F215	80	135	152,5	192	4	M16	40	102	_	312	252	786
00-140	112M-F215	00	133	102,0	132	7	IVITO	40			312	232	812
	132S-F265								152	132		278	896
	132M-F265								102	102		210	934
80-170	160M-F300	80	135	152,5	192	4	M16	40	180	160	370	334	1051
00-170	160L-F300	- 00	133	102,0	132	+	IVITO	40	100	100	370	334	1095

(**) длина двигателя, соответствующая стандарту DIN 42677, может отличаться из-за исполнения применяемого двигателя

FRES	IEC-электродвигатель	va	vb	vd	ve	vf	vg	vm ⁽¹⁾	vn	vp	vr ⁽¹⁾	vs	vt ⁽¹⁾	zb	zd	ze	zf	[KT]
	90S-F165																	100
	90S-F165	275		12	245	30	15		_						482	312	35	105
80-140	100L-F215	213	212	12	243	30	13	-	_	_	_	_	_	168	402	312	33	120
00-140	112M-F215		212											100				130
	132S-F265	500		1/	250	20	30	220	178	216	266	12	89		172	302	20	160
	132M-F265	300		17	230	20	30	220	170	210	200	12	03		712	302	23	170
80-170	160M-F300	500	250	14	250	20	30	300	210	254	320	14,5	108	169	532	360	35	240
00-170	160L-F300	000	230	17	200	20	00	550	254	207	020	17,0	100	103	002	000		250

⁽¹⁾ Опоры электродвигателя, на основе стандартного электродвигателя, могут быть разными в зависимости от исполнения применяемого электродвигателя.

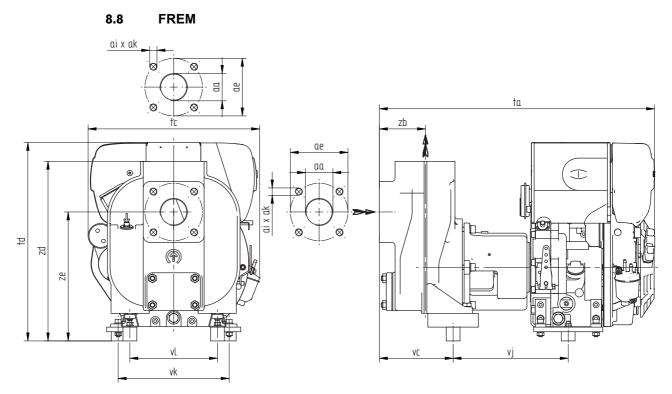


Рисунок 40: FREM.

FREM	двигатель	aa	ae	ai	ak	ta	tc	td
32-150	1B20	Rp 11/4	-	-	-	557	373	431
40-110	1B20	Rp 1½	-	-	-	550	373	431
50-125b	1B20	Rp 2	125	4	M16	598	373	431
50-125	1B20	Rp 2	125	4	M16	598	373	431
65-135b	1B30	65	145	4	M16	670	378	462
65-135	1B30	65	145	4	M16	670	378	462
65-155	1B40	65	145	4	M16	687	425	517
80-140	1B30	80	160	8	M16	708	378	462

аа ≥ 50: Соединения по ISO 7005 PN 16

FREM	двигатель	VC	vl	vj	vk	zb	ze	zd
32-150	1B20	111	190	258	241	73	265	360
40-110	1B20	120	165	241	241	78	270	355
50-125b	1B20	160	190	250	241	100	280	390
50-125	1B20	160	190	250	241	100	280	390
65-135b	1B30	170	190	291	241	107	302	514
65-135	1B30	170	190	291	241	107	302	415
65-155	1B40	161	212	303	280	107	342	455
80-140	1B30	199	212	300	241	126	312	440

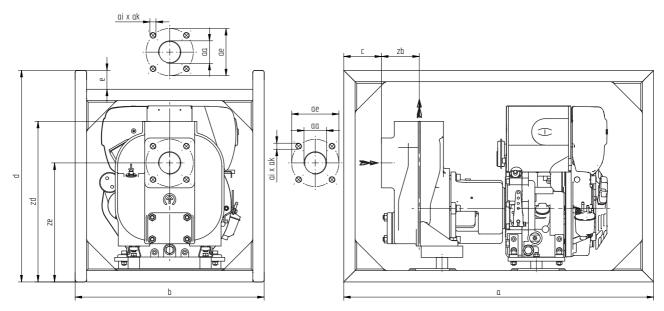


Рисунок 41: FREM.

FREM	двигатель	aa	ae	ai	ak	zb	ze	zd
32-150	1B20	Rp 1¼	-	-	-	73	300	395
40-110	1B20	Rp 1½	-	-	-	78	305	390
50-125b	1B20	Rp 2	125	4	M16	100	315	425
50-125	1B20	Rp 2	125	4	M16	100	315	425
65-135b	1B30	65	145	4	M16	107	337	450
65-135	1B30	65	145	4	M16	107	337	450
65-155	1B40	65	145	4	M16	107	377	490
80-140	1B30	80	160	8	M16	126	347	475

FREM	двигатель	а	b	С	d	е
32-150	1B20	820	500	125	560	50
40-110	1B20	820	500	125	560	50
50-125b	1B20	820	500	100	560	50
50-125	1B20	820	500	100	560	50
65-135b	1B30	820	500	50	560	50
65-135	1B30	820	500	50	560	50
65-155	1B40	820	500	50	560	50
80-140	1B30	820	500	50	560	50

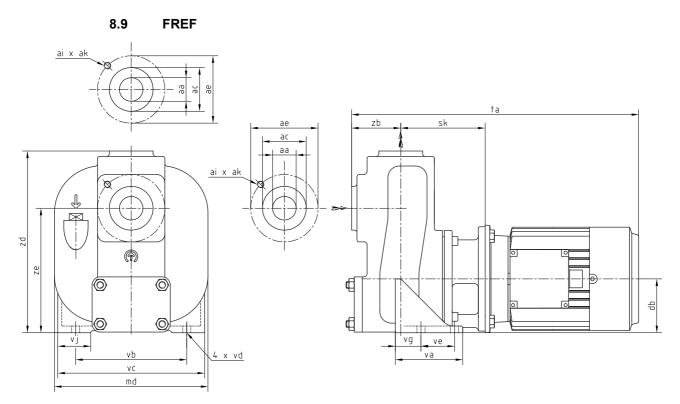


Рисунок 42: FREF.

FREF	двигатель	Р [кВт]	aa	ac	ae	ai	ak	db	md	sk	ta (*)
32-110	80 - F130	0,75	Rp 1¼	-	-	-	-	80	236	126	485
32-150	90L - F165	2,2	Rp 1¼	-	-	-	-	100	235	138	543
40-110	80 - F130	1,1	Rp 1½	-	-	-	-	80	244	131	495
50-125b	90S - F165	1,5	Rp 2	100	125	4	M16	100	280	152	560
50-125	90L - F165	2,2	Rp 2	100	125	4	M16	100	280	152	584
65-135b	100L - F215	3	65	120	145	4	M16	112	268	159	632
65-135	100L - F215	4	65	120	145	4	M16	112	268	159	632
65-155	112M - F215	5,5	65	120	145	4	M16	132	308	159	658
80-140	100L - F215	4	80	135	160	8	M16	132	321	178	670

аа \geq 50: Соединения по ISO 7005 PN 16

(*) длина двигателя, соответствующая стандарту DIN 42677, может отличаться из-за исполнения применяемого двигателя

FREF	двигатель	va	vb	VC	vd	ve	vf	vg	vj	zb	zd	ze	[кг]
32-110	80 - F130	95	165	228	12	50	10	33	54	73	270	185	31
32-150	90L - F165	91	190	240	12	40	12	36	75	73	300	205	43
40-110	80 - F130	110	165	228	12	50	10	38	54	78	275	190	32
50-125b	90S - F165	105	190	260	14	60	12	33	63	100	330	220	50
50-125	90L - F165	105	190	260	14	60	12	33	63	100	330	220	50
65-135b	100L - F215	111	190	260	14	60	12	36	75	107	365	252	52
65-135	100L - F215	111	190	260	14	60	12	36	75	107	365	252	62
65-155	112M - F215	112	212	292	14	70	12	27	83	107	395	282	92
80-140	100L - F215	136	212	292	14	80	12	41	79	126	410	282	76

9 Запасные части

9.1 Заказ запасных частей

9.1.1 Бланк заказа

Для заказа запасных частей вы можете использовать бланк заказа, включенный в данное руководство.

При заказе запасных частей всегда указывайте следующие данные:

- 1 Ваш адрес.
- 2 Количество, номер позиции и описание детали.
- 3 **Номер насоса**. Номер насоса указан на этикетке, прикрепленной к обложке данного руководства, а также на табличке с обозначением типа насоса.
- 4 В случае отличающегося напряжения питания электродвигателя вы должны указать правильное напряжение.

9.1.2 Рекомендуемые запасные части

Детали, отмеченные знаком *, являются рекомендуемыми запасными частями.

Компания SPXFLOW предлагает полные комплекты запасных частей. Руководство по комплектам запасных частей можно найти на веб-сайте SPXFLOW.

9.2 Насос FRE - группа подшипника 1

9.2.1 Чертеж в разрезе FRE - группа подшипника 1

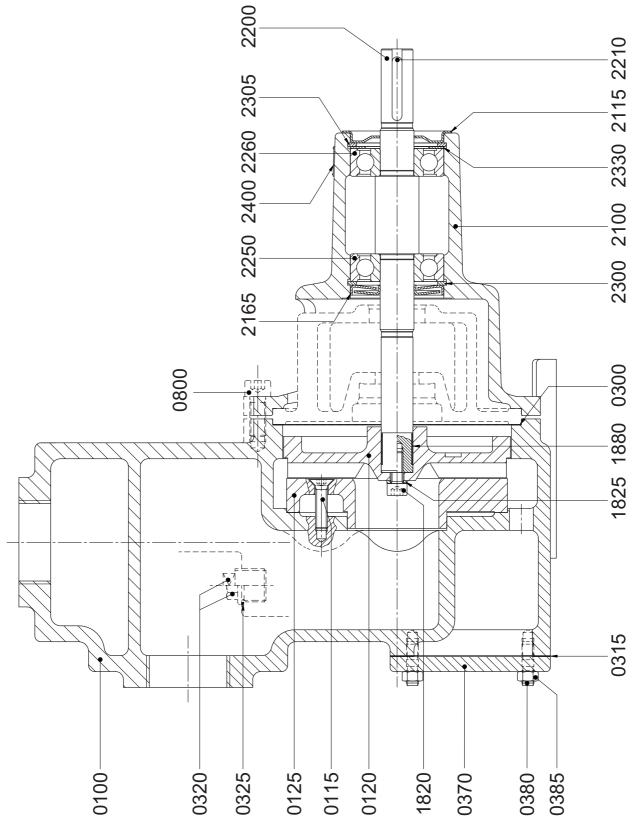


Рисунок 43: Чертеж в разрезе FRE - группа подшипника 1.

FreFlow

9.2.2 Перечень деталей FRE - группа подшипника 1

Позиция	Количество	05400140			Матер	иал	
позиция	количество	Описание	G1	G2	G6	B2	R6
0100	1	корпус насоса		чугун	1	бронза	нерж. ст.
0115	2	винт с потайной головкой		He	ержавеюц	цая сталь	
0120*	1	крыльчатка	чугун	бронза	нерж. ст.	бронза	нерж. ст.
0125*	1	износная пластина	Ч	угун	нерж. ст.	бронза	нерж. ст.
0300*	1	прокладка					
0315*	1	прокладка					
0320	1	пробка		чугун	1	нержавен	ощая сталь
0325*	1	уплотнительное кольцо			Нет		
0370	1	очистная крышка	чугун			бронза	нерж. ст.
0380	4	шпилька		He	цая сталь		
0385	4	гайка					
0800	4	винт с головкой под шестигранник	сталь				нерж. ст.
1820*	1	винт с головкой под шестигранник		Н	ержавеюц	цая сталь	
1825*	1	пружинная шайба		He	ержавеюц	цая сталь	
1880*	1	подкрепляющее кольцо		He	ержавеюц	цая сталь	
2100	1	кронштейн для подшипника			чугу	/H	
2115	1	крышка подшипника			стал	Ъ	
2165	1	уплотнительная шайба			стал	1Ь	
2200*	1	вал насоса		Н	ержавеюц	цая сталь	
2210*	1	шпонка соединения			стал	Ъ	
2250*	1	шариковый подшипник			стал	1Ь	
2260*	1	шариковый подшипник	сталь				
2300*	1	внутреннее стопорное кольцо	сталь				
2305*	1	внутреннее стопорное кольцо	сталь				
2330	1	регулировочное кольцо	сталь				
2400	1	заводская табличка		Н	ержавеюц	цая сталь	

нерж. ст. = нержавеющая сталь

-- Материал не указан

n/a = не применимо

9.3 Насос FRE - группа подшипника 2

9.3.1 Чертеж в разрезе FRE - группа подшипника 2

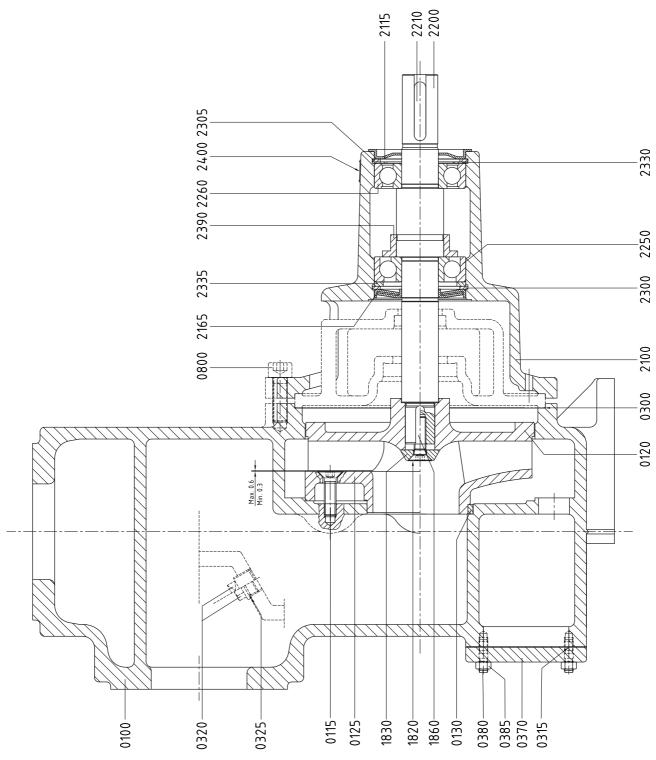


Рисунок 44: Чертеж в разрезе FRE - группа подшипника 2.

9.3.2 Перечень деталей FRE - группа подшипника 2

Полити	Vonue on a	0=440			Матер	иал		
Позиция	Количество	Описание	G1	G2	G6	B2	R6	
0100	1	корпус насоса		чугун	1	бронза	нерж. ст.	
0115	2 ¹⁾	винт с потайной головкой		Н	ержавеюц	цая сталь		
0120*	1	крыльчатка	чугун	бронза	нерж. ст.	бронза	нерж. ст.	
0125*	1 ¹⁾	износная пластина	чугун нерж. ст.			бронза	нерж. ст.	
0130*	1 ²⁾	компенсационное кольцо	чугун	бронза	нерж. ст.	бронза	нерж. ст.	
0300*	1	прокладка		•				
0315*	1	прокладка						
0320	1	пробка		чугун	ł	нержавен	ощая сталь	
0325*	1	уплотнительное кольцо			Нет			
0370	1	очистная крышка		чугун	ł	бронза	нерж. ст.	
0380	4	шпилька		Н	ержавеюц	цая сталь		
0385	4	гайка		He	ержавеюц	цая сталь		
0800	6	винт с головкой под шестигранник		сталь				
1820*	1	винт с потайной головкой		He	ержавеюц	цая сталь		
1830*	1	шайба		Н	ержавеюц	цая сталь		
1860*	1	шпонка крыльчатки		He	ержавеюц	цая сталь		
2100	1	кронштейн для подшипника			чугу	/H		
2115	1	крышка подшипника			стал	1Ь		
2165	1	уплотнительная шайба			стал	1Ь		
2200*	1	вал насоса		He	ержавеюц	цая сталь		
2210*	1	шпонка соединения			стал	Ъ		
2250*	1	радиально-упорный подшипник			стал	1Ь		
2260*	1	шариковый подшипник			стал	1Ь		
2300*	1	зажим	сталь					
2305*	1	зажим	сталь					
2330	1	регулировочное кольцо	сталь					
2335	1	регулировочное кольцо	сталь					
2390	1	прокладка			рези	на		
2400	1	заводская табличка		Н	ержавеюц	цая сталь		

¹⁾ Для насосов с наполовину открытой крыльчаткой

нерж. ст. = нержавеющая сталь

-- Материал не указан

n/a = не применимо

 $^{^{2)}}$ Для насосов с закрытой крыльчаткой

9.4 Насос FRE - группа подшипника 3

9.4.1 Чертеж в разрезе FRE - группа подшипника 3

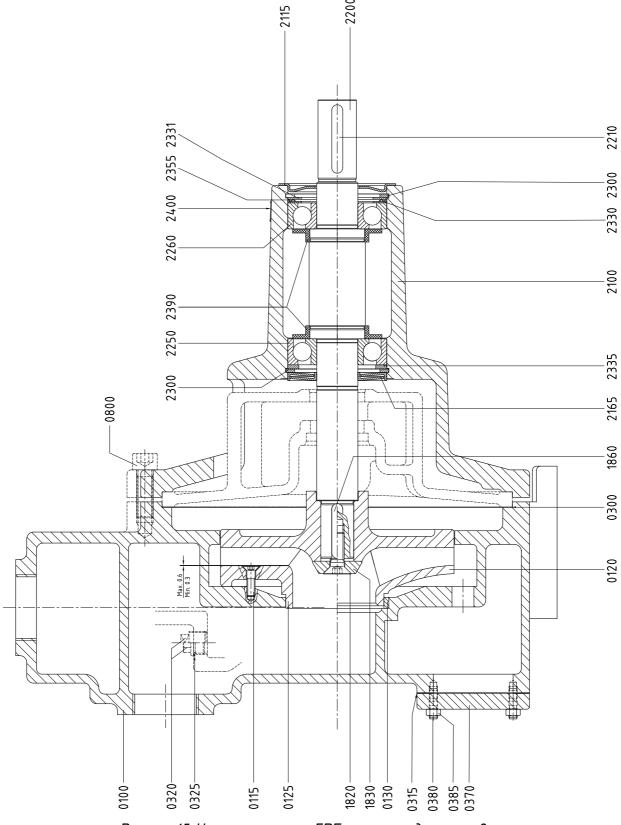


Рисунок 45: Чертеж в разрезе FRE - группа подшипника 3.

9.4.2 Перечень деталей FRE - группа подшипника 3

Позичит	Vonuesarsa	Описоние			Матер	иал	
позиция	Количество	Описание	G1	G2	G6	B2	R6
0100	1	корпус насоса		чугун	1	бронза	нерж. ст.
0115	2 ¹⁾	винт с потайной головкой		Н	цая сталь		
0120*	1	крыльчатка	чугун	бронза	бронза	нерж. ст.	
0125*	1 ¹⁾	износная пластина	чугун нерж. ст.			бронза	нерж. ст.
0130*	1 ²⁾	компенсационное кольцо	чугун бронза нерж. ст. бро				нерж. ст.
0300*	1	прокладка		•		•	
0315*	1 ³⁾	прокладка					
0320	1	пробка		чугун	1	нержавен	ощая сталь
0325*	1	уплотнительное кольцо			Нет	•	
0370	1	очистная крышка		чугун	1	нержавен	ощая сталь
0380	4/6	шпилька		He	ержавеюц	цая сталь	
0385	4/6	гайка		He	ержавеюц	цая сталь	
0800	6	винт с головкой под шестигранник			сталь		нерж. ст.
1820*	1	винт с потайной головкой		Н	ержавеюц	цая сталь	
1830*	1	шайба		Н	ержавеюц	цая сталь	
1860*	1	шпонка крыльчатки		He	ержавеюц	цая сталь	
2100	1	кронштейн для подшипника			чугу	/н	
2115	1	крышка подшипника			стал	٦Ь	
2165	1	уплотнительная шайба			стал	ПЬ	
2200*	1	вал насоса		He	ержавеюц	цая сталь	
2210*	1	шпонка соединения			стал	٦Ь	
2250*	1	радиально-упорный подшипник			стал	ПЬ	
2260*	1	радиально-упорный подшипник			стал	ПЬ	
2300*	2	стопорное кольцо	сталь				
2330	1	регулировочное кольцо	сталь				
2331	1	регулировочное кольцо	сталь				
2335	1	регулировочное кольцо	сталь				
2355*	1	волнистое кольцо	сталь				
2390	2	прокладка			рези	іна	
2400	1	заводская табличка		Н	ержавеюц	цая сталь	

¹⁾ Для насосов с наполовину открытой крыльчаткой

-- Материал не указан n/a = не применимо

²⁾ Для насосов с закрытой крыльчаткой нерж. ст. = нержавеющая сталь

9.5 Детали насосов FRE 80-210 и 100-250

9.5.1 Чертеж в разрезе FRE 80-210 и 100-250

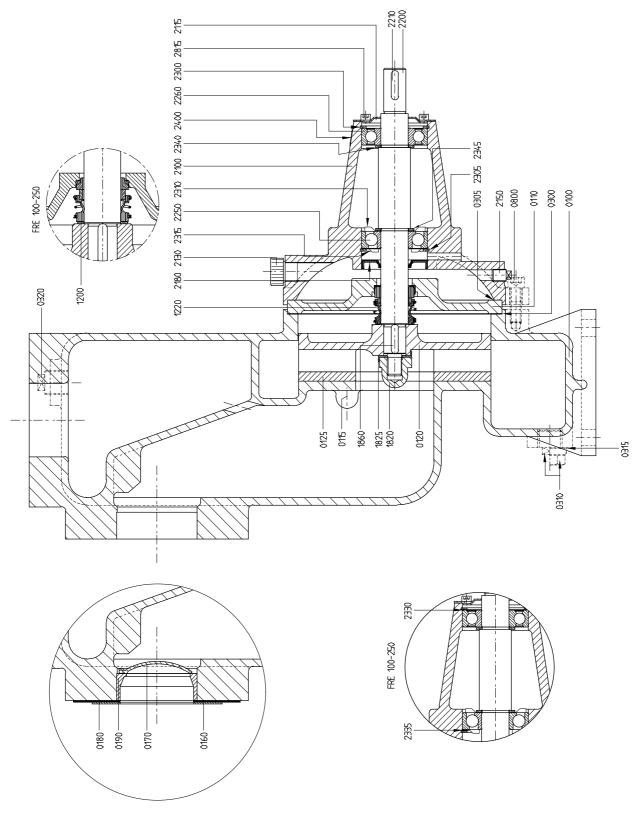


Рисунок 46: Чертеж в разрезе FRE 80-210 и 100-250.

9.5.2 Перечень деталей FRE 80-210 и 100-250

				Материал				
Позиция	Количество	Описание	G1	G2	G6	R6 ¹⁾		
0100	1	корпус насоса		чугун		нерж. ст.		
0110	1	промежуточная крышка		чугун		нерж. ст.		
0115	4	винт с потайной головкой	HE	ержавеющая с	таль			
0120*	1	крыльчатка	чугун	бронза	Н	ерж. ст.		
0125*	1	износная пластина	сталь нерж. ст					
0160	1 ²⁾	прокладка	резина					
0170	1 ²⁾	обратный клапан	СИН	гетический мат	гери	ал		
0180	1 ²⁾	пружинная пластина		сталь				
0190*	1 ²⁾	клапанное седло	синт	гетический мат	гери	ал		
0300*	1	прокладка						
0305*	1	прокладка						
0310	1	пробка		сталь		нерж. ст.		
0315	1 ¹⁾	уплотнительное кольцо						
0320	1	пробка		чугун		нерж. ст.		
0800	8/12	винт с головкой под шестигранник		сталь		нерж. ст.		
1200	1 ¹⁾	распорная втулка	нержавеющая сталь					
1220*	1	механическое уплотнение						
1820*	1	накидная гайка	бронза нерж.					
1825*	1	стопорная пластина	Ла	атунь		Нет		
1860*	1	шпонка крыльчатки	не	ержавеющая с	таль)		
2100	1	кронштейн для подшипника		чугун				
2115	1	крышка подшипника		сталь				
2130	1	заправочная пробка	синтетичес	ский материал	ал	ЮМИНИЙ		
2150	1	маслосливная пробка		чугун				
2180*	1	сальник						
2200*	1	вал насоса	сталы	ной сплав	Н	ерж. ст.		
2210*	1	шпонка соединения		сталь	•			
2250*	1	радиально-упорный подшипник						
2260*	1	шариковый подшипник						
2300*	1	внутреннее стопорное кольцо		сталь				
2305*	1	внутреннее стопорное кольцо		сталь				
2310*	1	грязезащитное кольцо		сталь				
2315*	1	грязезащитное кольцо		сталь				
2330	1 ¹⁾	регулировочное кольцо	сталь					
2335	1 ¹⁾	регулировочное кольцо	сталь					
2340	1	регулировочное кольцо	сталь					
2345	1	регулировочное кольцо	сталь					
2400	1	заводская табличка	H€	ержавеющая с	таль)		
2815	4	винт с головкой под		сталь				
	•	шестигранник						

¹⁾ Только для FRE 100-250

²⁾ Только для конструкции с всасывающим клапаном нерж. ст. = нержавеющая сталь -- Материал не указан n/a = не применимо

9.6 Детали насоса FRE 150-290b и 150-290

9.6.1 Чертеж в разрезе FRE 150-290b и 150-290

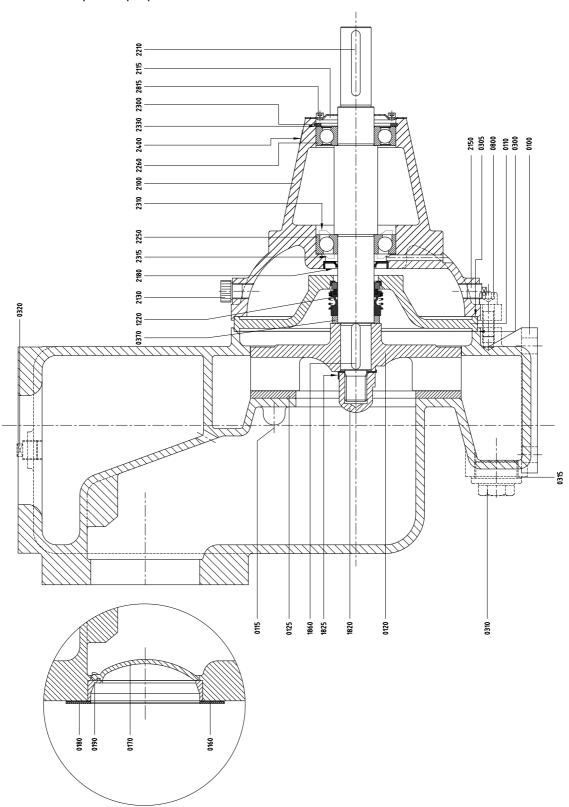


Рисунок 47: Чертеж в разрезе FRE 150-290b и 150-290.

9.6.2 Перечень деталей FRE 150-290b и 150-290

Позиция	Количество	Описанио		Ма	атериа	л	
позиция	количество	Описание	G1	G2	G6	R6	
0100	1	корпус насоса		чугун		нерж. ст.	
0110	1	промежуточная крышка		чугун		нерж. ст.	
0115	4	винт с потайной головкой		нержав	еющая	і сталь	
0120*	1 ¹⁾	крыльчатка	чугун	бронза	нержа	авеющая сталь	
0125*	1	износная пластина	сталь нержавеющая стал				
0160	1 ²⁾	прокладка	резина				
0170	1 ²⁾	обратный клапан	(синтетиче	еский и	иатериал	
0180	1 ²⁾	пружинная пластина			сталь		
0190*	1 ²⁾	клапанное седло	(синтетиче	еский и	иатериал	
0300*	1	прокладка					
0305*	1	прокладка					
0310	1	пробка	сталь нерж. с				
0315*	1	уплотнительное кольцо					
0320	1	пробка		нерж. ст.			
0800	8	винт с головкой под шестигранник	к сталь нерж. с				
1200	1	распорная втулка	нержавеющая сталь				
1220*	1	механическое уплотнение					
1820*	1	накидная гайка	бр	онза	нержа	авеющая сталь	
1825*	1	стопорная пластина	ла	тунь		Нет	
1860*	1	шпонка крыльчатки		нержав	еющая	і сталь	
2100	1	кронштейн для подшипника			чугун		
2115	1	крышка подшипника			сталь		
2130	1	заправочная пробка	(синтетиче	ский и	иатериал	
2150	1	маслосливная пробка			чугун		
2180*	1	сальник					
2200*	1	вал насоса	стальн	ой сплав	нержа	авеющая сталь	
2210*	1	шпонка соединения			сталь		
2250*	1	радиально-упорный подшипник					
2260*	1	шариковый подшипник					
2300*	1	стопорное кольцо			сталь		
2310*	1	грязезащитное кольцо			сталь		
2315*	1	грязезащитное кольцо			сталь		
2330	1	регулировочное кольцо			сталь		
2400	1	заводская табличка		нержав	еющая	і сталь	
2815	4	винт с головкой под шестигранник			сталь		

¹⁾ FRE 150-290b без исполнения G1

-- Материал не указан

n/a = не применимо

²⁾ Только для конструкции с всасывающим клапаном нерж. ст. = нержавеющая сталь

9.7 Детали насоса FRES

9.7.1 Чертеж в разрезе FRES

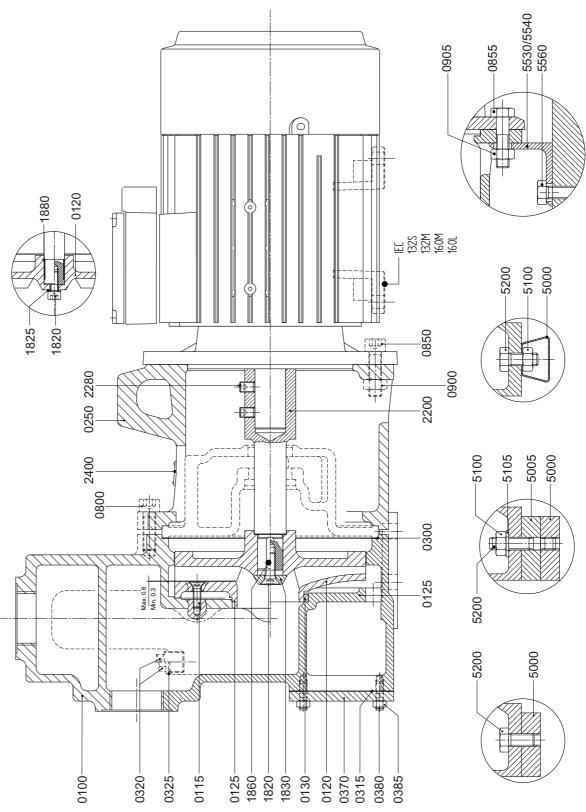


Рисунок 48: Чертеж в разрезе FRES.

9.7.2 Перечень деталей FRES

Поотт	Vanuari	0=			Матер	иал		
Позиция	Количество	Описание	G1	G2	G6	B2	R6	
0100	1	корпус насоса		чугун	1	бронза	нерж. ст.	
0115	2 ¹⁾	винт с потайной головкой		He	ержавеюц	цая сталь		
0120*	1	крыльчатка	чугун	бронза	нерж. ст.	бронза	нерж. ст.	
0125*	1 ¹⁾	износная пластина	чугун нерж.			бронза	нерж. ст.	
0130*	1 ²⁾	компенсационное кольцо	чугун бронза нерж. ст.			бронза	нерж. ст.	
0250	1	фонарное кольцо			чугу	′H		
0300*	1	прокладка						
0315*	1	прокладка						
0320	1	пробка		чугун	l	нержавен	ощая сталь	
0325*	1	уплотнительное кольцо			Нет			
0370	1	очистная крышка		чугун	ł	бронза	нерж. ст.	
0380	4/6	шпилька			стал	Ъ		
0385	4/6	гайка			стал	Ъ		
0800	4/6	винт с головкой под шестигранник			сталь		нерж. ст.	
0850	2/4	болт			стал	1Ь		
0855	2 ⁵⁾	болт			стал	1Ь		
0900	2/4	гайка			стал	1Ь		
0905	4 ⁵⁾	гайка			стал	1Ь		
1820*	1 ³⁾	винт с головкой под шестигранник		Н	ержавеюц	цая сталь		
1820*	1 ⁴⁾	винт с потайной головкой		Н	ержавеюц	цая сталь		
1825*	1 ³⁾	пружинная шайба		He	ержавеюц	цая сталь		
1830*	1 ⁴⁾	шайба		Н	ержавеюц	цая сталь		
1860*	1 ⁴⁾	шпонка крыльчатки		Н	ержавеюц	цая сталь		
1880*	1 ³⁾	подкрепляющее кольцо		Н	ержавеюц	цая сталь		
2200*	1	втулочный вал		Н	ержавеюц	цая сталь		
2280*	2	стопорный винт		Н	ержавеюц	цая сталь		
2400	1	заводская табличка		Н	ержавеюц	цая сталь		
5000	2 ⁵⁾	сечение в вертикальном положении (профиль ANKRA)	сталь					
5005	2 ⁵⁾	подъемная деталь	сталь					
5100	4 ⁵⁾	гайка	нержавеющая сталь					
5105	4 ⁵⁾	шайба	нержавеющая сталь					
5200	4 ⁵⁾	болт/штифт		Н	ержавеюц	цая сталь		
5530	1 ⁵⁾	опора			стал	1Ь		

Позиция	Количество	Описанио	Материал						
позиция	ROJINISCIBO	Описание	G1	G2	G6	B2	R6		
5540	1 ⁵⁾	опора	сталь						
5560	2 ⁵⁾	болт	нержавеющая сталь						

¹⁾ Для насосов с наполовину открытой крыльчаткой

-- Материал не указа n/a = не применимо

²⁾ Для насосов с закрытой крыльчаткой

³⁾ Для группы подшипника 1

⁴⁾ Для группы подшипника 2 и 3

 ⁵⁾ Сборка зависит от размера насоса и двигателя нерж. ст. = нержавеющая сталь
 -- Материал не указан

9.8 Детали насоса FREF

9.8.1 Чертеж в разрезе FREF

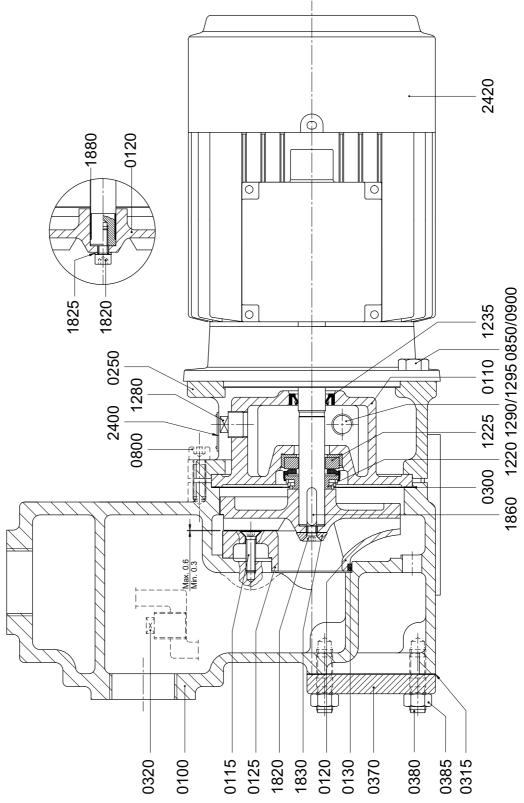


Рисунок 49: Чертеж в разрезе FREF.

9.8.2 Перечень деталей FREF

Позиция	Колицеотро	05400440	Материал
Позиция	Количество	Описание	G1
0100	1	корпус насоса	чугун
0110	1	промежуточная крышка	чугун
0115	2 ¹⁾	винт с потайной головкой	нержавеющая сталь
0120*	1	крыльчатка	чугун
0125*	1 ¹⁾	износная пластина	чугун
0130*	1 ²⁾	компенсационное кольцо	чугун
0250	1	фонарное кольцо	чугун
0300*	1	прокладка	
0315*	1	прокладка	
0320	1	пробка	чугун
0370	1	очистная крышка	чугун
0380	4	шпилька	нержавеющая сталь
0385	4	гайка	нержавеющая сталь
0800	4/6	винт с головкой под шестигранник	сталь
0850	4	болт	сталь
0900	4	гайка	сталь
1220*	1	уплотнительное кольцо	
1225*	1	встречное кольцо	
1235*	1	сальник	
1280	1	пробка	пластмасса
1290	1	пробка	сталь
1295	1	прокладка	
1820*	1 ³⁾	винт с головкой под шестигранник	нержавеющая сталь
1820*	1 ⁴⁾	винт с потайной головкой	нержавеющая сталь
1825*	1 ³⁾	пружинная шайба	нержавеющая сталь
1830*	1 ⁴⁾	шайба	нержавеющая сталь
1860*	1 ⁴⁾	шпонка крыльчатки	нержавеющая сталь
1880*	1 ³⁾	подкрепляющее кольцо	нержавеющая сталь
2400	1	заводская табличка	нержавеющая сталь
2420	1	двигатель	сталь

¹⁾ Для насосов с наполовину открытой крыльчаткой

²⁾ Для насосов с закрытой крыльчаткой

³⁾ Для группы подшипника 1

⁴⁾ Для группы подшипника 2

⁻⁻ Материал не указан

9.9 Детали насоса FREM

9.9.1 Чертеж в разрезе FREM

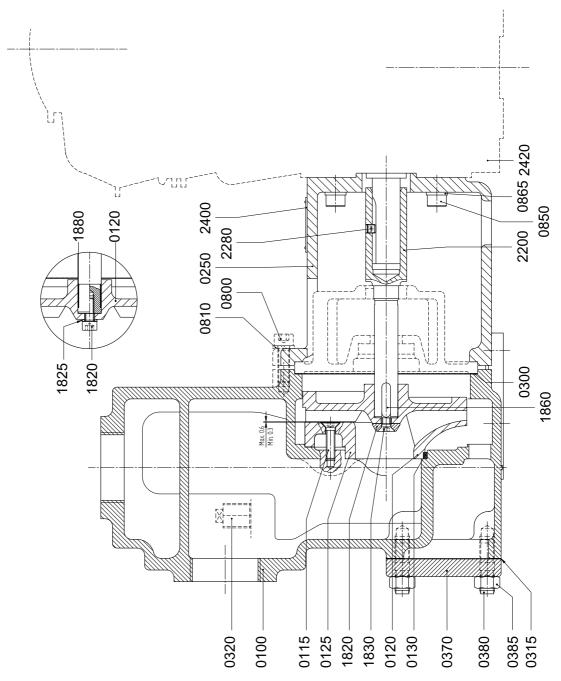


Рисунок 50: Чертеж в разрезе FREM.

9.9.2 Перечень деталей FREM

Позиция	Количество	Описание	Материал
ПОЗИЦИЯ	Количество	Описание	G1
0100	1	корпус насоса	чугун
0115	2 ¹⁾	винт с потайной головкой	нержавеющая сталь
0120*	1	крыльчатка	чугун
0125*	1 ¹⁾	износная пластина	чугун
0130*	1 ²⁾	компенсационное кольцо	чугун
0250	1	фонарное кольцо	чугун
0300*	1	прокладка	-
0315*	1	прокладка	
0320	1	пробка	чугун
0370	1	очистная крышка	чугун
0380	4	шпилька	нержавеющая сталь
0385	4	гайка	нержавеющая сталь
0800	4/6	винт с головкой под шестигранник	сталь
0810	4/6	пружинная шайба	сталь
0850	4	болт	сталь
0865	4	пружинная шайба	сталь
1820*	1 ³⁾	винт с головкой под шестигранник	нержавеющая сталь
1820*	1 ⁴⁾	винт с потайной головкой	нержавеющая сталь
1825*	1 ³⁾	пружинная шайба	нержавеющая сталь
1830*	1 ⁴⁾	шайба	нержавеющая сталь
1860*	1 ⁴⁾	шпонка крыльчатки	нержавеющая сталь
1880*	1 ³⁾	подкрепляющее кольцо	нержавеющая сталь
2200	1	втулочный вал	нержавеющая сталь
2280*	1	стопорный винт	сталь
2400	1	заводская табличка	нержавеющая сталь
2420	1	двигатель внутреннего сгорания	

¹⁾ Для насосов с наполовину открытой крыльчаткой

²⁾ Для насосов с закрытой крыльчаткой

³⁾ Для группы подшипника 1

⁴⁾ Для группы подшипника 2

⁻⁻ Материал не указан

9.10 Детали - Механическое уплотнение MQ1

9.10.1 Чертежи в разрезе - Механическое уплотнение MQ1

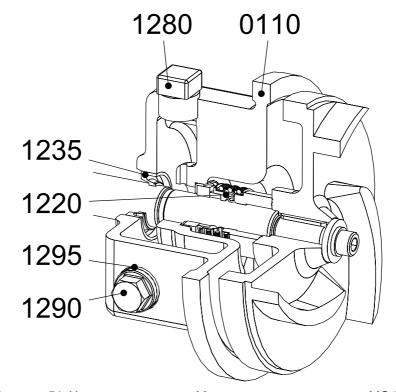


Рисунок 51: Чертеж в разрезе - Механическое уплотнение MG12.

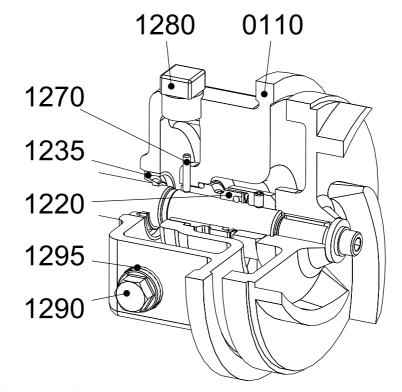


Рисунок 52: Чертеж в разрезе - Механическое уплотнение M7N.

9.10.2 Перечень деталей - Механическое уплотнение MQ1

Позиция	Количество	Описанио	Материал					
Позиция	коли псетве	Описание	G1	G2	G6	B2	R6	
0110	1	промежуточная крышка		чугун		бронза	нерж. ст.	
1220	1	механическое уплотнение	e					
1235*	1	сальник						
1270*	1 ¹⁾	стопорный штифт		не	ржаве	ющая стал	Ь	
1280	1	пробка			плас	стмасса		
1290	1	пробка	сталь нержавеющая ста					
1295	1	уплотнительное кольцо						

¹⁾ Только для M7N

нерж. ст. = нержавеющая сталь

-- Материал не указан

9.11 Детали FRE - план 11

9.11.1 Чертеж в разрезе FRE - план 11

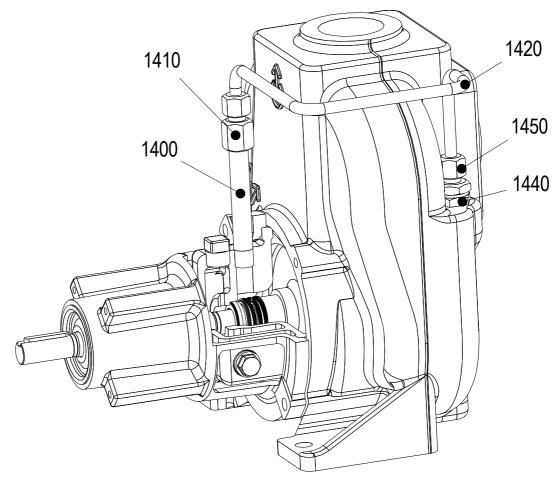


Рисунок 53: Чертеж в разрезе FRE - план 11.

9.11.2 Перечень деталей FRE - план 11

Позиция Количество О		Описацио	Материал				
		Описание	G1	G2	G6	B2	R6
1400	1	Ниппель	нержавеющая сталь				Ь
1410	1	Трубная муфта	нержавеющая сталь				Ь
1420	1	Труба	нержавеющая сталь			Ь	
1440	1	Насадка	нержавеющая сталь			Ь	
1450	1	Штуцер с наружной резьбой	нержавеющая сталь			Ь	

Позиция 1440 не предусмотрена для моделей 32-110, 32-150, 40-110, 40-170, 50-205 и 65-230.

9.12 Детали - Двойное механическое уплотнение MD1

9.12.1 Чертеж в разрезе - Двойное механическое уплотнение MD1

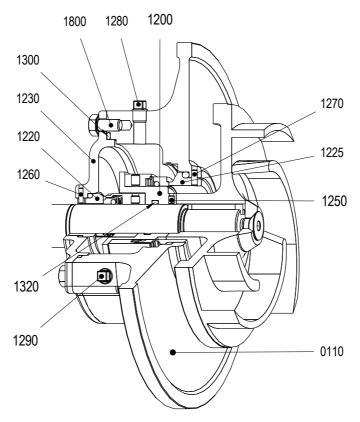


Рисунок 54: Чертеж в разрезе - Двойное механическое уплотнение МD1.

9.12.2 Перечень деталей - Двойное механическое уплотнение MD1

Позициа	Количество	Описание		Мат	ериал	
позиции коли псотв		Описание	G1	G2	G6	R6
0110	1	промежуточная крышка	чугун нерж.			нерж. ст.
1200*	1	втулка вала	H	ержавен	ощая с	таль
1220*	1	механическое уплотнение				
1225*	1	механическое уплотнение				
1230	1 ¹⁾	крышка механического		чугун		нерж. ст.
1200	1 ′	уплотнения	чугун нерж.		порж. от.	
1250	2	стопорный винт	нержавеющая сталь			таль
1260	1	стопорный штифт	нержавеющая сталь			таль
1270	1	стопорный штифт	H	ержавен	ощая с	таль
1280	1	пробка		чугун		нерж. ст.
1290	1	пробка	чугун нерж.		нерж. ст.	
1300*	1	кольцевая прокладка				
1320*	1	кольцевая прокладка				
1800	3	самонарезывающий болт	нержавеющая сталь			таль

¹⁾ Группа подшипника 1 : исполнение G1, G2 и G6 аналогично R6 нерж. ст. = нержавеющая сталь

-- Материал не указан

9.13 Детали - Режущий механизм

9.13.1 Чертеж в разрезе - Режущий механизм

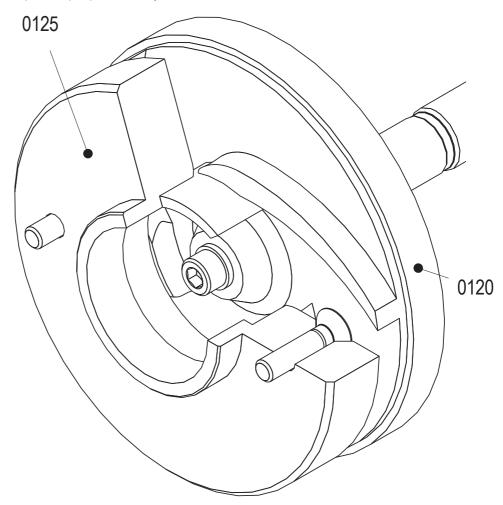


Рисунок 55: Чертеж в разрезе - Режущий механизм

9.13.2 Перечень деталей - Режущий механизм

Позициа	Копичество	Описание	Материал		
Позиция Количество		Описание	G6	R6	
0120*	1	крыльчатка	нержавеющая сталь		
0125*	1	износная пластина	нержавеющая сталь		

10 Технические данные

10.1 Масляная камера

Таблица 8:Рекомендованный тип масла: SAE 0W30.

Состав	масла	Типы насосов		
MQ0/MQ1	MD1	Типы пасосов		
0,05 литра	0,03 литра	32-110 и 40-110		
0,15 литра	0,05 литра	32-150, 50-125b, 50-125, 65-135, 65-155 и 80-140		
0,25 литра	0,2 литра	40-170, 50-205, 65-230, 80-170, 100-225b и 100-225		
0,5 литра		80-210		
1,0 литра		100-250		
2,1 литра		150-290b и 150-290		

10.2 Рекомендуемые фиксирующие жидкости

Таблица 9:Рекомендуемые фиксирующие жидкости.

Описание	Фиксирующая жидкость
фиксирование болта крыльчатки	
установочные винты втулочного вала	Loctite 243
крепежные винты FREM	
крепление втулочного вала на вале двигателя насоса FREM	Loctite 648
крепление компенсационного кольца в корпусе насоса на насосах с закрытой крыльчаткой	Loctite 641
уплотнение подкрепляющего кольца в насосах из нержавеющей стали и бронзы	Loctite 572

10.3 Моменты затяжки

10.3.1 Моменты затяжки болтов и гаек *Таблица 10:Моменты затяжки болтов и гаек.*

Материалы	8,8	12,9	A2, A4			
Резьба	Мом	Момент затяжки [Нм]				
M6	11	17	8,5			
M8	25	41	21			
M10	51	83	42			
M12	87	150	70			
M16	215	370	173			
Приложение	кронштейн подшипника / проставочное кольцо	установочные винты	крыльчатка / износная пластина			

10.3.2 Моменты затяжки установочных винтов муфты Таблица 11.Моменты затяжки установочных винтов муфты.

Размер	Момент затяжки [H⋅м]		
M6	4		
M8	8		
M10	15		
M12	25		
M16	70		

10.4 Гидравлическая производительность

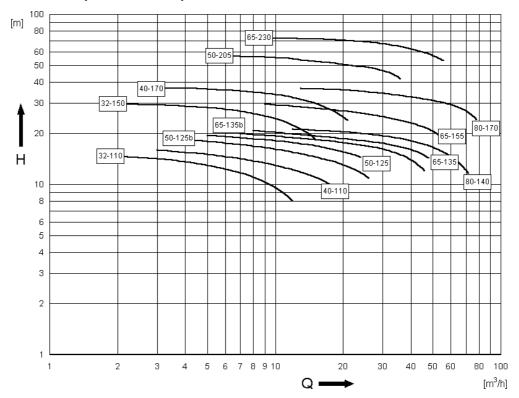


Рисунок 56: Обзор рабочих параметров при 3000 об/мин.

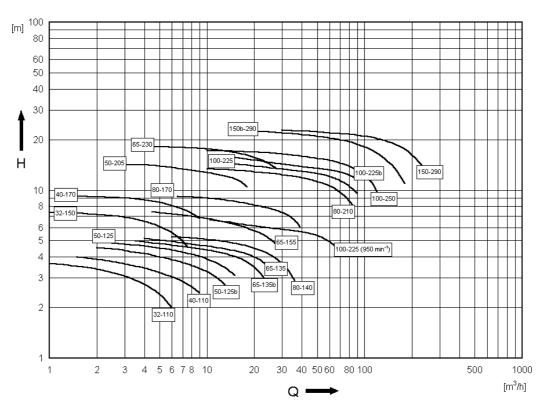


Рисунок 57: Обзор рабочих параметров при 1500 об/мин.

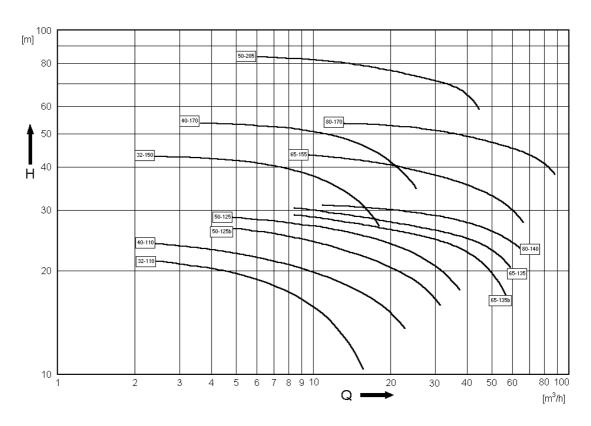


Рисунок 58: Обзор рабочих параметров при 3600 об/мин.

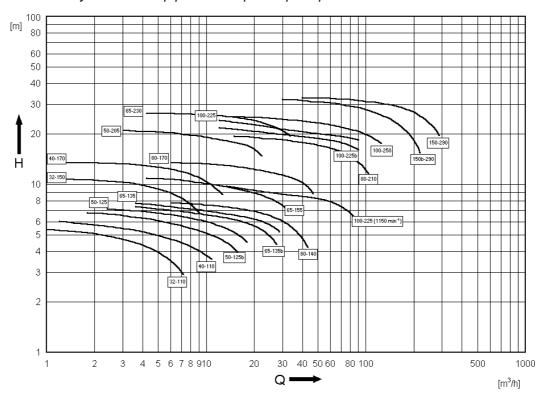


Рисунок 59: Обзор рабочих параметров при 1800 об/мин.

10.5 Допустимые усилия и крутящие моменты на фланцах

Усилия и крутящие моменты, действующие на фланцы, могут вызвать деформацию насосной установки. Она проявляется путем смещения шейки вала насоса относительно шейки вала двигателя. Допустимые усилия и крутящие моменты должны быть основаны на следующих максимальных значениях для радиального смещения шейки вала насоса:

- насосы группы кронштейна 1: 0,15 мм
- насосы группы кронштейна 2: 0,20 мм,
- насосы группы кронштейна 3: 0,25 мм,
- насосы группы кронштейна 4: 0,25 мм.

При определении усилий необходимо учитывать вес трубопровода и жидкости.

Независимо от направления действия сил, крутящих моментов и их составляющих на фланцы, допустимые значения должны соответствовать следующей формуле:

$$\left(\frac{F_{v}}{F_{v, max}}\right)^{2} + \left(\frac{F_{h}}{F_{h, max}}\right)^{2} + \left(\frac{M}{M_{max}}\right)^{2} \le 1$$

 ${\rm F_v} = 2/3 \cdot {\rm F_{v,\,press}} + {\rm F_{v,\,suct}} \le {\rm F_{v,\,max}}$ Показатель **v** = в вертикальном направлении,

ось у

 $F_{h} = F_{h,\,press} + 2/3 \cdot F_{h,\,suct} \leq F_{h,\,max}$ Показатель **h** = в горизонтальном направлении,

ось х и ось z

F_{v макс}, F_{h макс} и М_{макс} приведены в таблице. При этом делается различие между насосным агрегатом **без бетонирования** опорной плиты и насосным агрегатом с опорной плитой, которая **забетонирована**

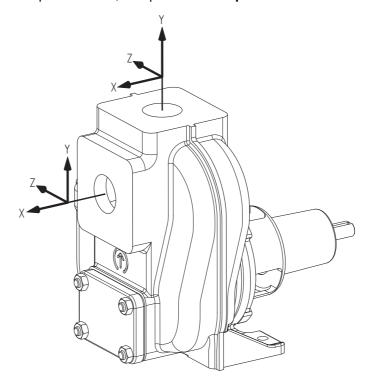


Таблица 12:Допустимые усилия и моменты вращения на фланцах в соответствии с EN-ISO 5199

FDF	Группа			Насосный агрегат, опорная плита забетонирована			
FRE	кроншт ейна	F _{v max} [H]	F _{h max} [H]	М _{тах} [Нм]	F _{v max} [H]	F _{h max} [H]	М _{тах} [Нм]
32-110	1	1250	950	175	2250	1500	450
32-150	2	1250	950	150	2250	1500	425
40-110	1	1450	1050	250	2550	1800	625
40-170	3	1300	975	200	2300	1600	500
50-125b	2	1450	1050	250	2550	1800	625
50-125	2	1450	1050	250	2550	1800	625
50-205	3	1400	1000	275	2500	1750	650
65-135b	2	1850	1250	475	3250	2500	1200
65-135	2	1850	1250	475	3250	2500	1200
65-155	2	1500	1050	325	2800	2100	850
65-230	3	1750	1200	450	3200	2400	1125
80-140	2	1650	1050	400	3000	2300	1000
80-170	3	1950	1250	500	3400	2550	1225
80-210	4	3300	2000	1050	5445	3300	1730
100-225b	3	3100	1850	900	4750	3900	2175
100-225	3	3100	1850	900	4750	3900	2175
100-250	4	3600	2200	1250	6120	3740	2125
150-290b	4	3500	2100	1130	6090	3654	1970
150-290	4	3500	2100	1130	6090	3654	1970

Материал корпуса насоса:

Чугун	указанные значения х 1,0
Нержавеющая сталь	указанные значения х 2,0

10.6 Технические данные шума

10.6.1 Шум насоса в зависимости от мощности насоса

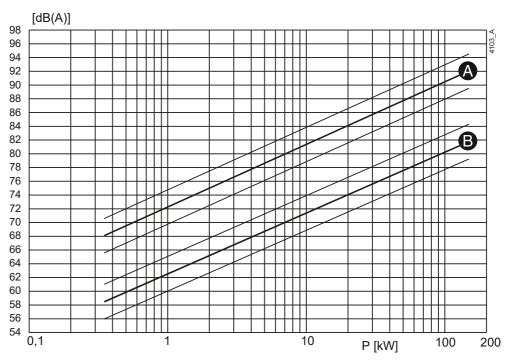


Рисунок 60: Зависимость уровня шума от мощности насоса [кВт] при 1450 об/мин

А = уровень звуковой мощности, В = уровень звукового давления.

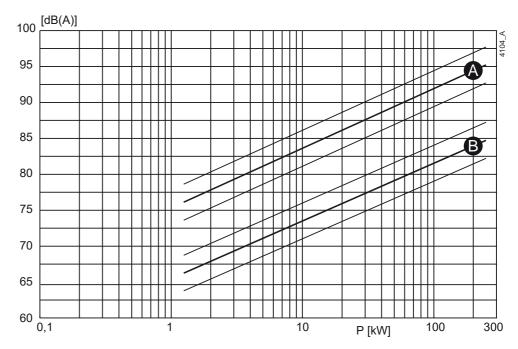
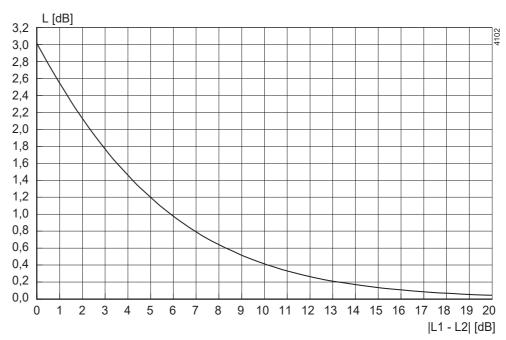



Рисунок 61: Зависимость уровня шума от мощности насоса [кВт] при 2900 об/мин

А = уровень звуковой мощности, В = уровень звукового давления.

10.6.2 Уровень шума насосной установки в целом

Рисунок 62: Уровень шума насосной установки в целом.

Для определения суммарного уровня шума насосной установки в целом необходимо сложить уровни шума насоса и двигателя. Это легко сделать с использованием приведенного выше графика.

- 1 Определите уровень шума (L1) насоса, см. рисунок 60 или рисунок 61.
- 2 Определите уровень шума (L2) двигателя, обратившись к документации двигателя.
- 3 Определите разность уровней |L1 L2|.
- 4 Найдите разность уровней по оси |L1 L2| и поднимитесь до кривой.
- 5 От кривой переместитесь влево к оси L[дБ] и посмотрите значение.
- 6 Прибавьте это значение к наивысшему из двух значений уровня шума (L1 или L2).

Пример:

- 1 Насос 75 дБ; двигатель 78 дБ.
- 2 |75-78| = 3 дБ.
- 3 3 дБ по оси X = 1,75 дБ по оси Y.
- 4 Наивысший уровень шума + 1,75 дБ = 78 + 1,75 = 79,75 дБ.

Указатель

Б	
Безопасность19	Меры предосторожности 31
	Механическое уплотнение 41
В	инструкции по сборке 41
Варианты конструкции	Механическое уплотнение M7N
Ввод в эксплуатацию	разборка 42
•	сборка 42
Γ	механическое уплотнение MD1
Группа подшипников14	разборка 43
	сборка 43
Д	Механическое уплотнение MG12
Двигатель внутреннего сгорания 23	разборка
направление вращения23	сборка 41
техника безопасности	Моменты затяжки
	для болтов и гаек 106
E	установочных винтов муфты 106
Ежедневное обслуживание	Муфта
	допуски при совмещении 21
3	совмещение
Заказ запасных частей12	·
Запасные части	Н
комплект запасных частей81	Направление вращения 25
Запуск	Насосный агрегат
•	установка
И	Неисправности 28
Инструкции по заказу	•
Использование в других целях 17	0
147	Обслуживающий технический персонал
К	9
Код типа	Описание насоса
Компенсационное кольцо	Осмотр
замена	двигатель 25
разборка	насоса
сборка	
Консервация	П
Крыльчатка	Повседневное обслуживание
' замена	двойное механическое уплотнение
	28
M	механическое уплотнение 27
Масляная камера	Подшипниќ 45
состав масла	·

FRE/RU (2502) 9.7

Подшипники
инструкции по разборке45
инструкции по сборке45
Подъем
Подъемная проушина
подвемная проушина
Р Рабочий выключатель
C
Сборка
насосного агрегата20
Серийный номер14
Система обратного извлечения32
Слив31
жидкости
Соединения
Специалисты
Специальные инструменты
Статическое электричество19
Сфера применения17
T
Техника безопасности
знаки
Транспортировка10
Трубопроводы
труоопроводы
V
y
Условия эксплуатации
Устройство обратного извлечения
разборка
сборка
Утилизация
·
Φ
Форма заказа по факсу
Форма заказа по факсу
V
X
Хранение10, 11, 12
Ч
Шум
Э
Экран
разборка
сборка
Электродвигатель
подключение23

114 FRE/RU (2502) 9.7

Форма для заказа запасных частей

ФАКС №						
АДРЕС						
Ваш заказ б	удет рассмо	трен при у	словии, что данн	ая форма прави л	тьно запо.	лнена и подписана.
Дата заказа	a:					
Ваш номер	заказа:					
Тип насоса	:					
Исполнени	e:					
Количество	Позиция №	Деталь				Товарный номер насоса
	•					
Адрес доставки:				Адрес выставле	ения счет	a:
Заказчик:			Подпись:		Телефон	:

ORDFORM (2301) 3.5 RU 115

116 ORDFORM (2301) 3.5 RU

FreFlow

Горизонтальный центробежный насос

SPXFLOW

Dr. A. F. Philipsweg 51 9403 AD Assen THE NETHERLANDS (НИДЕРЛАНДЫ)

Телефон: + 31 (0) 592 37 67 67 Факс: + 31 (0) 592 37 67 60

Эл. почта: johnson-pump.nl@spxflow.com

www.spxflow.com/johnson-pump

Компания SPX FLOW, Inc. постоянно совершенствует свою продукцию и проводит исследовательскую работу. Технические характеристики могут быть изменены без предварительного уведомления.

ВЫПУЩЕНО 01.2023 Редакция: FRE/RU (2502) 9.7

© SPX FLOW, Inc., 2022 г.