EU Declaration of Conformity for Valves and Valve Manifolds

SPX FLOW TECHNOLOGY GERMANY GMBH
Gottlieb-Daimler-Str. 13, D-59439 Holzwickede

herewith declares that the

APV double seal and double seat valves of the series
SD4, SDT4, SDU4, SDMS4, SDMSU4, SDTMS4, SWcip4, DSV,
DA3, DA3SLD, DE3, DEU3, DET3, DKR2, DKRT2, DKRH2
in the nominal diameters DN 25 - 150, ISO 1" – 6" and 1 Sh5 - 6 Sh5

APV butterfly valves of the series SV1 and SVS1F, SVL and SVSL
in the nominal diameters DN 25 - 100, DN 125 - 250 and ISO 1" – 4"

APV ball valves of the series KHI, KHV
in the nominal diameters DN 15 - 100

APV single seat, diaphragm and spring loaded valves of the series
S2, SW4, SWhp4, SW4DPF, SWmini4, SWT4, SWS4, MF4, MS4, MSP4, AP/T1, CPV,
RG4, RG4DPF, RGMS4, RGE4, RGE4DPF, RGEMS4, PR2, PRD2, SI2, UF/R3, VRA/H
in the nominal diameters DN 10 - 150, ISO 1/2" – 4" and 1 Sh5 - 6 Sh5

and the valve manifolds installed thereof

meet the requirements of the Directives 2006/42/EC (superseding 89/392/EEC
and 98/37/EC) and ProdSG (superseding GPSG - 9.GPSG V).

For official inspections, SPX FLOW presents
a technical documentation according to Appendix VII of the Machinery Directive,
this documentation consisting of documents of the development and construction,
description of measures taken to meet the conformity and to correspond with
the basic requirements on safety and health, incl. an analysis of the risks,
as well as an operating manual with safety instructions.

The conformity of the valves and valve manifolds is guaranteed.

Authorised person for the documentation:
Frank Baumbach

SPX FLOW TECHNOLOGY GERMANY GMBH
Gottlieb-Daimler-Str. 13, D-59439 Holzwickede, Germany

November 2017

Frank Baumbach
Regional Engineering Manager, F&B Components
<table>
<thead>
<tr>
<th>Table of Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General Terms</td>
<td>2</td>
</tr>
<tr>
<td>2. Safety Instructions</td>
<td>2</td>
</tr>
<tr>
<td>3. Intended Use</td>
<td>2</td>
</tr>
<tr>
<td>4. Application and Mode of Operation</td>
<td>3</td>
</tr>
<tr>
<td>5. Cleaning</td>
<td>4</td>
</tr>
<tr>
<td>5.1. Cleaning CPV-o:</td>
<td></td>
</tr>
<tr>
<td>5.2. Cleaning CPV-c:</td>
<td></td>
</tr>
<tr>
<td>6. Installation</td>
<td>4–5</td>
</tr>
<tr>
<td>6.1. Welding Instructions</td>
<td></td>
</tr>
<tr>
<td>7. Dimensions / Weights</td>
<td>6</td>
</tr>
<tr>
<td>8. Technical Data</td>
<td>7–8</td>
</tr>
<tr>
<td>8.1. General terms</td>
<td></td>
</tr>
<tr>
<td>8.2. Compressed air quality</td>
<td></td>
</tr>
<tr>
<td>8.3. Pressure ratio diagram (air/product)</td>
<td></td>
</tr>
<tr>
<td>8.4. Pressure loss curve</td>
<td></td>
</tr>
<tr>
<td>9. Materials</td>
<td>9</td>
</tr>
<tr>
<td>10. Maintenance</td>
<td>9</td>
</tr>
<tr>
<td>11. Service Instructions</td>
<td>10–13</td>
</tr>
<tr>
<td>11.1. Dismantling from the line system</td>
<td></td>
</tr>
<tr>
<td>11.2. Dismantling of wear parts</td>
<td></td>
</tr>
<tr>
<td>11.3. Installation of seals and assembly of valve</td>
<td></td>
</tr>
<tr>
<td>11.4. Dismantling of booster</td>
<td></td>
</tr>
<tr>
<td>11.5. Assembly of booster</td>
<td></td>
</tr>
<tr>
<td>11.6. Reconstruction of valve variant CPV - o to CPV - c and vice versa</td>
<td></td>
</tr>
<tr>
<td>12. Trouble Shooting</td>
<td>13</td>
</tr>
<tr>
<td>13. Spare Parts Lists</td>
<td>13</td>
</tr>
<tr>
<td>CPV - RN - 01.177</td>
<td></td>
</tr>
</tbody>
</table>
1. General Terms

This instruction manual has to be read carefully and observed by the competent operating and maintenance personnel.

For design reasons, the technical operating ranges of the valve with regard to operating pressures and temperatures have to be kept.

We have to point out that we will not accept any liability for damage or malfunctions resulting from the non-compliance with this instruction manual.

Descriptions and data given herein are subject to technical changes.

2. Safety Instructions

DANGER
- The technical safety symbol draws your attention to important directions for operating safety. You will find it wherever the activities described are bearing risks of personal injury.
- Before any maintenance of the valve, the line system in which the constant pressure valve is installed, and the air supply must be depressurized.
- Any leakages arising at the diaphragm are carried off via the leakage drain. Leakages must be drained off safely and without risks (e.g. through a funnel). Leakages must be visibly detectable.

Attention!
Observe Service Instructions to ensure safe maintenance of the valve!

3. Intended Use

The intended use as field of application of the CPV valve is to keep process pressures constant in process plants.

Arbitrary, structural changes at the valve may affect safety as well as the intended functionality of the valve and are not permissible.

Authorizations and External Approvals:
3-A Sanitary Standards, Inc.
4. Application and Mode of Operation

The CPV constant pressure diaphragm valve forms part of the pneumatically operated pressure regulating valves and pressure holding valves which keep process pressures constant in process technological plants of the food and beverage as well as of the pharmaceutical and chemical industries (e.g. application of separators, pasteurizers and UHT plants, fillers, etc.).

The effective principle of pressure keeping is based on the diminuation and enlargement of the free flow section at the valve seat by the valve shaft which is connected with the regulating diaphragm.

The actuation of CPV valves is effected by compressed air at (F). Compressed air supply is to be undertaken via a regulating valve for control air (fine pressure reducer) with integrated aeration. The product pressure should be controllable by a measuring unit.

Recommendation:
1 = fine pressure reducer - type Manostat, 40 mbar - 8 bar
2 = filter - ≈ 50 μm

Valve variant CPV-o provides for a constant pressure regulation before the valve. (o = open)

It opens with increasing product pressure and closes with decreasing pressure.

Valve variant CPV-c provides for a constant pressure regulation behind the valve. (c = closed)

It closes with increasing product pressure and opens with decreasing pressure.

Thus, the set value adjusted is kept at a constant level. Through the use of the product / air diaphragm, intermixing can be prevented in case of diaphragm rupture due to wear. Leakages are indicated immediately via the leakage drain.
5. Cleaning

Cleaning of the CPV valves is undertaken with pipeline cleaning.

The following has to be considered for the different valve variants.

Δp of about 3bar must be kept.

Cleaning CPV-o:
- At a max. CIP line pressure up to 3 bar, the valve is not controlled with pneumatic air. The valve moves into open position.
- If the max. CIP line pressure of 3 bar is exceeded, the valve must be controlled with pneumatic air pressure, e.g. \(P_{CIP} = 5 \text{ bar}, P_{air} = 2 \text{ bar} \).

Cleaning CPV-c:
- Supply pneumatic air to produce a pressure difference of about 3 bar. The valve moves into open position, e.g. \(P_{CIP} = 2 \text{ bar}, P_{air} = 5 \text{ bar} \).

6. Installation

The CPV constant pressure diaphragm valve is installed as corner valve in such a way that liquids can drain off in depressurized state. The installation position must provide for self-draing of the valve.

All valves are equipped with weld ends.

- Attention! Observe welding instructions!
7. Installation

7.1 Welding Instructions

CPV

- Before welding of the valves, the valve insert must be dismantled from the housing. See to a careful handling to avoid damage to the parts.

- Welding may only be carried out by certified welders (DIN EN ISO 9606-1). (seam quality DIN EN ISO 5817)

- The welding of the valve housings must be effected in such a way that deformation strain cannot be transferred from the outside to the valve body.

- The preparation of the weld seam up to 3 mm wall thickness must be carried out in butt manner as a square butt joint without air. Consider shrinkage!

- TIG orbital welding is best.

- After welding of the valve housings or of the mating flanges and after work at the pipelines, the corresponding parts of the installation or pipelines must be cleaned from welding residues and soiling. If these cleaning instructions are not observed, welding residues and dirt particles can settle in the valve and cause damage.

- Any damage resulting from the nonobservance of these welding instructions is not subject to our guarantee.

- Welding directives for aseptic application shall be drawn from the AWS/ANSI Directives and EHEDG Guidelines.
Dimensions / Weights

<table>
<thead>
<tr>
<th>Model</th>
<th>DN</th>
<th>ref.-No.</th>
<th>A</th>
<th>B</th>
<th>Ø C</th>
<th>Ø D</th>
<th>Ø E</th>
<th>F</th>
<th>Inst. dimension X in mm</th>
<th>Weight in kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPV-o</td>
<td>50</td>
<td>20-16-444/..</td>
<td>95</td>
<td>190</td>
<td>50</td>
<td>160</td>
<td></td>
<td>50</td>
<td>80</td>
<td>2,3</td>
</tr>
<tr>
<td>CPV-c</td>
<td>50</td>
<td>20-16-445/..</td>
<td>95</td>
<td>190</td>
<td>50</td>
<td>160</td>
<td></td>
<td>50</td>
<td>80</td>
<td>2,3</td>
</tr>
<tr>
<td>CPV-o booster</td>
<td>50</td>
<td>20-16-446/..</td>
<td>95</td>
<td>230</td>
<td>50</td>
<td>160</td>
<td>130</td>
<td>50</td>
<td>80</td>
<td>4,2</td>
</tr>
<tr>
<td>CPV-c booster</td>
<td>50</td>
<td>20-16-447/..</td>
<td>95</td>
<td>230</td>
<td>50</td>
<td>160</td>
<td>130</td>
<td>50</td>
<td>80</td>
<td>4,2</td>
</tr>
<tr>
<td>CPV-o</td>
<td>2"</td>
<td>20-16-469/..</td>
<td>95</td>
<td>190</td>
<td>47.6</td>
<td>160</td>
<td></td>
<td>50</td>
<td>80</td>
<td>2,3</td>
</tr>
<tr>
<td>CPV-c</td>
<td>2"</td>
<td>20-16-470/..</td>
<td>95</td>
<td>190</td>
<td>47.6</td>
<td>160</td>
<td></td>
<td>50</td>
<td>80</td>
<td>2,3</td>
</tr>
<tr>
<td>CPV-o booster</td>
<td>2"</td>
<td>20-16-471/..</td>
<td>95</td>
<td>230</td>
<td>47.6</td>
<td>160</td>
<td>130</td>
<td>50</td>
<td>80</td>
<td>4,2</td>
</tr>
<tr>
<td>CPV-c booster</td>
<td>2"</td>
<td>20-16-472/..</td>
<td>95</td>
<td>230</td>
<td>47.6</td>
<td>160</td>
<td>130</td>
<td>50</td>
<td>80</td>
<td>4,2</td>
</tr>
</tbody>
</table>
8. Technical Data

8.1. General terms

Operating pressure: 7 bar
Max. control air pressure for CPV: 6 bar
Max. control air pressure for CPV with booster: 4 bar
Operating temperature: 135°C
short-term: 140°C
Air connections: G1/8"

8.2. Compressed air quality

Quality class according to DIN ISO 8573-1

- content of solid particles: quality class 3,
 max. size of solid particles per m³
 10000 of 0,5 µm < d < 1,0 µm
 500 of 1,0 µm < d < 5,0 µm

- content of water: quality class 3,
 max. dew point temperature -20°C
 For installations at lower temperatures or at higher altitudes, additional measures must be considered to reduce the pressure dew point accordingly.

- content of oil: quality class 1,
 max. 0,01 mg/m³

The oil applied must be compatible with Polyurethane elastomer materials.
8. Technical Data

8.3. Pressure ratio diagram (air/product)

8.4. Pressure loss curve CPV

<table>
<thead>
<tr>
<th>Valve Stroke (mm)</th>
<th>kvs (m³/h)</th>
<th>ΔP (bar)</th>
<th>Q (m³/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>22.5</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valve Stroke (mm)</th>
<th>kvs (m³/h)</th>
<th>ΔP (bar)</th>
<th>Q (m³/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>25</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5</td>
<td>40</td>
</tr>
</tbody>
</table>
9. **Materials**

Housing, intermediate piece and cover out of stainless steel:

1.4404 (DIN EN 10088)

Screws:

1.4301 (DIN EN 10088)

Seals:

standard design EPDM

Diaphragms:

composite material

TFM / EPDM

10. **Maintenance**

The maintenance intervals depend on the corresponding application (product, temperature) and are to be determined by the operator himself carrying out temporary checks.

The following maintenance recommendation must be verified on the basis of the individual operating conditions. As the valves are often used in hot applications or are subject to operating frequencies of more than 30,000 cycles per year, we recommend half-yearly preventive maintenance.

Replacement of seals according to Service Instructions.

All seals must be greased well before their installation.

The diaphragm must be greased well at the product-verted side, only!

Recommendation:

APV assembly grease for EPDM

0.75 kg tin - ref.No. 00070-01-019/03; H147382
60 g tube - ref.No. 00070-01-018/93; H147381

Attention!

Do not use grease containing mineral oil for EPDM seals.

Assembly of the valve according to Service Instructions.
11. Service Instructions

The item numbers refer to the spare parts drawings (DIN design: RN 01.177).

11.1. Disassembly from the line system
1. Depressurize the product and air lines.
2. Dismantle the air supply at (9).
3. Loosen the nuts (18) and remove the hexagon screws (17).
4. Lift the valve insert off the housing (1).

11.2. Dismantling of wear parts
1. Hold against the stop sleeve (12) by a spanner SW 17 and loosen the hexagon nut (13) by a spanner SW 19.
2. Remove the shaft (3 or 4) with diaphragm (6, 7) and upper shaft (10) to the bottom from the housing cover (8).
3. Remove the stop sleeve (12) to the top from the housing cover.
4. Remove the two guide bushings (11) and the o-rings (15, 16) from the housing cover (8).
5. Remove the o-ring (14) from the shaft (3 or 4).
11. Service Instructions

11.3. Installation of seals and assembly of valve

1. Insert the o-ring (14) into the groove of the shaft (3 or 4).
2. Insert the guide bushings (11) and the o-ring (15, 16) into the housing cover (8).
3. Grease the elastomer side of the disc diaphragm (6) well. Pin the disc diaphragm with the Teflon-coated side to the front on the shaft (3 or 4).
4. Press the flat diaphragm (7) into the upper shaft (10) (see sketch) and place it on the shaft.
5. Push the upper part of the shaft completely with diaphragm and shaft into the housing cover.
6. Insert the stop sleeve (12) into the shaft bearing.
7. Screw on the hexagon nut (13). Hold against the stop sleeve (12) by a spanner SW 17 and tighten the hexagon nut with a spanner SW19.
8. Place the housing cover (8) on the housing (1). Before assembly see to the housing groove for the diaphragm being free of fat and clean.
9. Tighten the housing cover and the housing with the screws (17) and nuts (18) provided.
10. Fix the air supply line.
11. Service Instructions

11.4. Dismantling of booster

The item numbers refer to the spare parts drawings RN 01.177.

1. Depressurize the product line and air supply line.
2. Dismantle the air supply line (9, 19.7).
3. Remove the hexagon screws (19.6).
4. Remove the housing cover (19.5), diaphragm (19.4) and piston (19.3).
5. Press the lower retainer ring (19.1) to the bottom and out of the groove.
6. Slide the booster housing to the bottom and remove the upper retainer ring.
7. Remove the booster housing to the top.

11.5. Assembly of booster

1. Install the lower retainer ring up to the leakage drain pipe via the groove of the shaft bearing. (The retainer ring must not lock in the groove.)
2. Place the booster housing (19.2) via the hexagon nut (13).
3. Insert the upper retainer ring into the groove.
4. Slide the booster housing to the top until it locks in the upper retainer ring.
5. Push the lower retainer ring via the shaft bearing to the top. The retainer ring must lock in the groove. (The booster housing is firmly connected with the upper housing.)
6. Insert the piston (19.3) and diaphragm (19.4). Place the housing cover on the diaphragm and press the two parts together. The diaphragm must distinctly lock in the groove.
7. Tighten the housing cover.

11.6. Reconstruction of valve variants CPV-o to CPV-c and vice versa

In order to change the mode of operation of the valve, just the valve shaft (3 or 4) has to be replaced.

See dismantling of wear parts, see item 11.2.
12. Trouble Shooting

<table>
<thead>
<tr>
<th>Failure</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product leakage from the leakage drain</td>
<td>Replace the disc diaphragm (6).</td>
</tr>
<tr>
<td>Air leakage from the leakage drain</td>
<td>Check and replace flat diaphragm (7) and o-rings (15, 16).</td>
</tr>
</tbody>
</table>

When damaged seals are changed, generally all seals should be replaced. For valve service actions SPX FLOW supplies complete seal kits. (see spare parts lists).

13. Spare Parts Lists

The reference numbers of the spare parts for the different valve designs and sizes are included in the attached spare parts drawings with corresponding lists.

Please indicate the following data to place an order for spare parts:
- required number of parts
- reference number
- designation.

Data are subject to change.
Druckhalteventil mit Booster
Constant-pressure valve with booster
CPV-c Booster, CPV-o Booster
Ersatzteilliste: spare parts list

Druckhalteventil mit Booster

Constant-pressure valve with booster

CPV-c Booster, CPV-o Booster

<table>
<thead>
<tr>
<th>pos.</th>
<th>Menge</th>
<th>Beschreibung</th>
<th>Material</th>
<th>DN25/8</th>
<th>DN50</th>
<th>2"</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>description</td>
<td></td>
<td>WS-Nr. ref.-no.</td>
<td>WS-Nr. ref.-no.</td>
<td>WS-Nr. ref.-no.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Gehäuse CPV</td>
<td>1.4404</td>
<td>21-08-175/47</td>
<td>H180970</td>
<td>21-08-176/47</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Gehäuse CPVXO</td>
<td>1.4404</td>
<td>21-08-201/47</td>
<td>H317742</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Schaft CPV-c</td>
<td>1.4404</td>
<td>21-22-180/42</td>
<td>H178452</td>
<td>21-22-180/42</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Schaft CPV-o</td>
<td>1.4404</td>
<td>21-22-185/42</td>
<td>H178453</td>
<td>21-22-185/42</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>Gehäuse CPVXO</td>
<td>1.4404</td>
<td>21-22-187/42</td>
<td>H317744</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>Tellermembrane</td>
<td>EPDM</td>
<td>58-23-010/93</td>
<td>H207419</td>
<td>58-23-010/93</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>Flachmembrane</td>
<td>EPDM</td>
<td>58-23-010/23</td>
<td>H174403</td>
<td>58-23-010/23</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>Gehäusedeckel</td>
<td>Kunststoff</td>
<td>21-20-180/47</td>
<td>H178457</td>
<td>21-20-180/47</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>Verschraubung Union</td>
<td>EG 6x1 G1/8"</td>
<td>08-63-010/93</td>
<td>H16394</td>
<td>08-63-010/93</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>Schaft oberteil</td>
<td>PTFE 25% Kohle</td>
<td>21-21-180/12</td>
<td>H178449</td>
<td>21-21-180/12</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>Führungsbuchse Bushing</td>
<td>PTFE</td>
<td>08-01-178/23</td>
<td>H207154</td>
<td>08-01-178/23</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>Anschlaghülse Stop sleeve</td>
<td>08-05-180/44</td>
<td>H201934</td>
<td>08-05-180/44</td>
<td>H201934</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>O-Ring O-ring</td>
<td>EPDM FDA-konform</td>
<td>58-06-029/64</td>
<td>H148388</td>
<td>58-06-029/64</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>O-Ring O-ring</td>
<td>EPDM FDA-konform</td>
<td>58-06-055/64</td>
<td>H76934</td>
<td>58-06-055/64</td>
</tr>
</tbody>
</table>
Druckhalteventil mit Booster

Constant-pressure valve with booster

CPV-c Booster, CPV-o Booster

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>O-Ring</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>Sitzschraube</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>Hex. screw</td>
<td>8</td>
</tr>
<tr>
<td>19</td>
<td>Booster CPV Komplett</td>
<td>1</td>
</tr>
<tr>
<td>19.1</td>
<td>Retainer ring</td>
<td>2</td>
</tr>
<tr>
<td>19.2</td>
<td>Gehäuse</td>
<td>1</td>
</tr>
<tr>
<td>19.3</td>
<td>Kolben</td>
<td>1</td>
</tr>
<tr>
<td>19.4</td>
<td>Roller membrane</td>
<td>1</td>
</tr>
<tr>
<td>19.5</td>
<td>Deckel</td>
<td>1</td>
</tr>
<tr>
<td>19.6</td>
<td>Sitzschraube</td>
<td>6</td>
</tr>
<tr>
<td>19.7</td>
<td>U-Link</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>349</td>
<td>Booster CPV komplett</td>
<td>1</td>
</tr>
<tr>
<td>350</td>
<td>Stirnstift</td>
<td>2</td>
</tr>
<tr>
<td>351</td>
<td>Gehäuse</td>
<td>1</td>
</tr>
<tr>
<td>352</td>
<td>Kolben</td>
<td>1</td>
</tr>
<tr>
<td>353</td>
<td>Roller membrane</td>
<td>1</td>
</tr>
<tr>
<td>354</td>
<td>Deckel</td>
<td>1</td>
</tr>
<tr>
<td>355</td>
<td>Sitzschraube</td>
<td>6</td>
</tr>
<tr>
<td>356</td>
<td>U-Link</td>
<td>1</td>
</tr>
</tbody>
</table>

Material

- O-Ring: EPDM / FDA-konform
- Beschaffung: 58-06-078/64
- Beschaffungssatz: 1.4310
- Skt. Schraube: DIN EN 24017-M6x20 Hex. screw A2
- O-Ring: EPDM / FDA-konform
- Beschaffung: 1.4310
- Beschaffungssatz: 1.4301
- Skt. Schraube: DIN EN 24017-M6x20 Hex. screw A2
- O-Ring: EPDM / FDA-konform
- Beschaffung: 1.4310
- Beschaffungssatz: 1.4301
- Skt. Schraube: DIN EN 24017-M6x20 Hex. screw A2
- O-Ring: EPDM / FDA-konform
- Beschaffung: 1.4310
- Beschaffungssatz: 1.4301
- Skt. Schraube: DIN EN 24017-M6x20 Hex. screw A2
- O-Ring: EPDM / FDA-konform
- Beschaffung: 1.4310
- Beschaffungssatz: 1.4301
- Skt. Schraube: DIN EN 24017-M6x20 Hex. screw A2
- O-Ring: EPDM / FDA-konform
- Beschaffung: 1.4310
- Beschaffungssatz: 1.4301
- Skt. Schraube: DIN EN 24017-M6x20 Hex. screw A2

Dichtungssatz Seal kit

- Dichtungssatz Seal kit H315338
- EPDM / TFM H200075

Seal kit

- EPDM / TFM H200075
- EPDM / TFM H200075

Dichtungssatz Seal kit

- Pos. 6, 7, 11, 14, 15, 16 available as complete seal kits only

Datum: 13.04.16
Name: Tryko
Geprüft: