WHP+
CENTRIFUGAL PUMP

READ AND UNDERSTAND THIS MANUAL PRIOR TO OPERATING OR SERVICING THIS PRODUCT.
Sectional Drawing

Section 1
Shaft size ø25 and ø35

Section 2
Shaft size ø25 and ø35
1: Pump housing
2: Cap nut
3: O-ring
4: Impeller
6: O-ring
7: Back plate
8: Locating pin
9: Screw
10: O-ring
11: Shaft
14: Extension frame

Section 1
Single seal for shaft size ø25 and ø35

Section 2
Double seal with liquid/steam flushing for shaft size ø25 and ø35

5.1: Seal housing
5.3: Pressure ring
5.4: Drain pipe
5.5: O-rings
5.6: Stationary seal face
5.7: Rotary seal face
5.8: Pin
5.9: Seal housing
5.10: O-ring
5.11: Pressure ring
0. Warnings

1. Read through the instructions before installing the pump and starting it up. If in doubt, contact your local APV dealer.

2. Check that the specifications of the motor and motor control unit are correct, particularly in operating environments where there may be a risk of explosion.

3. Do not start the pump before all the pipe connections have been fitted carefully and tightened. If the pump is to be used for hot and/or hazardous liquids, special precautions must be taken. In such cases follow the local regulations for personal safety when working with these products.

4. Do not start the pump before the motor shroud or shaft guard has been securely fitted.

5. The pump contains rotating parts. Never put your hands or fingers into a pump while it is in operation.

6. Never touch the shroud during operation, as it can become very hot.

7. Never touch the pump body during operation if the pump is being used for hot media where there is a risk of burning.

8. Never close both the intake and outlet of the pump while it is in operation. If the pump runs with liquid in it without circulation, the liquid will heat up and may turn into vapour, causing a risk of explosion.

9. Always remove all assembly tools from the pump before starting it up.

10. Never hose down the electric motor directly with water or cleaning fluid.

11. Never lift the pump in the shroud, as it is not designed to carry the weight of the motor. Remove the shroud before lifting the pump. Always use securely fitted lifting straps when lifting with a crane or similar lifting gear.

12. Never dismantle the pump before the motor has been disconnected from the power supply. Remove the fuses and disconnect the cable from the motor terminal box.

13. All electrical installation must be carried out by qualified staff.

14. Never dismantle the pump until the pipe system has been drained. Remember that liquid will always collect in the pump body. If the pump is to be used for hot and/or hazardous liquids, special precautions must be taken. In such cases follow the local regulations for personal safety when working with these products.

15. The maximum pump outlet pressures specified below must not be exceeded:

 Max. 60 bar: WHP+30/80, WHP+55/60, WHP+60/110

 The values for maximum outlet pressure apply to water at a temperature of 20°C.
1. Introduction to the WHP+ range

1.1 The WHP+ range:
This manual covers all standard versions of the WHP+ pump. Check the pump's nameplate to make sure that you have a WHP+ pump. The W+ and W+ 140/50 pump versions are described in a separate manual, which will be delivered along with the pump.

1.2 The WHP+ pump, options and extras
The following standard options are available in the WHP+ range:
- with or without shroud
- with frame and adjustable feet or fixed bracket
- with shaft seal in carbon/SiC or SiC/SiC
- with O-rings in EPDM or FPM (Viton) (Kalrez and possibly others)
- with single-acting shaft seal or double-action shaft seal prepared for water-flushed or steam-flushed shaft seal
- in 3A version

Extras:
- sound-damping shroud

The WHP+ pumps can be supplied with all commonly used welding unions and clamp rings with allowances for system pressure.

1.3 Identifying the pump model
A nameplate as shown in Fig. 1 is fitted on the extension frame.

Example:
Type WHP+30/80: Indicates pump model, here WHP+ 30/80.
125: Indicates diameter of impeller.
Serial No.: The “unique” serial number of the pump.
Order No.: APV’s order number of the pump.
Year: Indicates the year of manufacture.

The vacant field can be used to identify the pump in terms of its position in the plant.

1.4 Identifying the motor model
The motor is identified by removing the shroud and reading the kW rating and the centreline height of the motor on the type plate.
2. Installation of the pump

2.1 Positioning
The pump must be positioned so that the suction pipe is as short as possible and there is a falling gradient towards the suction nozzle. Keep the number of valves, bends and tee-pieces on the suction side to an absolute minimum. There must be sufficient space around the pump for piping and access for maintenance.

2.2 Lining up the pipe system
Line up the pipes carefully to the pump suction and discharge nozzles. Make sure that the pipe system is adequately supported by pipe supports, so that the pump body is not subject to strains and weight from the pipe system.

2.3 Power supply
The motor should be connected to the mains via a motor isolator in accordance with local regulations. The motor should be connected in accordance with the instructions inside the cover of the motor's terminal box.

The motor should be connected such that the direction of rotation of the motor (and thus of the impeller) is anticlockwise when viewed from the front towards the suction nozzle of the pump body (fig. 2).

2.4 Water supply for water-flushed shaft seal
Pumps with a water-flushed shaft seal have two hose connectors on the seal flange (fig. 3). The hose connectors are 1/8" and fit a Ø6.0 mm hose. The necessary liquid flow rate is 15 - 30 l/h. Max. pressure 7 bar.

The hose connection in the seal flange should always be positioned vertically with the fluid inlet underneath and the outlet on top.

Water consumption can be limited by installing a solenoid valve for the flushing water on the supply side. The open/close function of the solenoid valve can be controlled by the pump's start/stop sequence.

Do not use the flushing water connectors for steam or steam condensate. If you want to use steam as the barrier medium, special aseptic piping is required, see section 2.5.

2.5 Connecting steam or steam condensate for aseptic use
Shaft seals for aseptic use are supplied with Ø6/Ø4 PTFE pipes for connections.
The connection for steam or steam condensate with static double seal in the pump body is supplied with fittings for 8 mm steel pipes.
Steam can be used at temperatures up to 150°C and pressures up to 5 bar.
3. **Before start-up**

Before starting the pump, dismantle and clean the suction pipe. Any foreign material in the pump should be removed.

3.1 Checking the pump body for foreign material

Remove the pump body as described below. The assembly drawing is to be used for reference (page 2).

1. Disconnect the power supply.
2. Remove the pump body (item 1) by undoing the screws (item 9) and carefully pull off the pump body.
3. Turn the impeller (item 4) to ensure that there is no foreign material behind it.
4. If there is any foreign material in the pump, remove it.
5. When the pump body is clean and free of foreign material, reassemble the pump.

Mount the pump body as described below:

6. Push the pump body in over the O-ring (item 6) and fit the screws (item 9).
 Torque settings:
 - M16: 250 Nm (185 lbf ft)
 - M12: 100 Nm (74 lbf ft)

7. Install suction and discharge pipes. Check that the pipe unions have been tightened properly and that pipe supports have been fitted.

To make the pump body easier to fit, we recommend that you give the O-ring a thin layer of food-approved, acid-free grease or soap.

3.2 Testing the pump

To check that the pump is working satisfactorily, pour water into the pump and start it for a moment. Check the direction of rotation (fig. 2). Listen for any unusual noises.

In pumps with water-flushed or steam-flushed shaft seals, the seal chamber must be filled with water/steam.

Never allow the pump to run without liquid, as this will ruin the shaft seal.

4. **Putting the pump into service**

Check the following before starting the pump:
- that the shaft guard has been fitted properly
- that there is free access for liquid
- that the valve on the discharge side is closed

The valve on the discharge side (if fitted) is closed during start-up to reduce motor starting current, but should be opened again as soon as the pump has been started.

4.1 Flushing water/steam/condensate etc.

In pumps with a flushed shaft seal, check that the supply of flushing medium is open and that the flow of the medium is adequate (approx. 15-30 l/hour).
5. Maintenance

5.1 Checking the shaft seal
Check the pump’s shaft seal for leaks on a regular basis. If the shaft seal is leaking, replace it or its relevant parts as described below.

5.2 Replacing the shaft seal
The assembly drawing shows the position and construction of the shaft seal - both ordinary seals and seals with water/steam flushing.

To replace the shaft seal, it is necessary to dismantle the pump as described below. The assembly drawing is to be used for reference.

1. Disconnect the power supply in the motor isolator by removing the fuses and disconnecting the cables.
2. Turn off the steam and flushing water supply.
3. Close the inlet and discharge of the pump and drain the pump body.
 If the pump is used for hot and/or aggressive liquids, special precautions must be taken. In such cases, observe the local regulations for personal protection when working with these products.
4. Once the inlet and outlet pipes have been closed properly, release the screws (item 9), take off the pump body (item 1) and remove the impeller (item 4).
5. Remove the stationary seal face (item 5.6) mounted in the back plate (item 7) with your fingers.
6. Remove the O-ring (item 5.5) from the stationary seal face.
7. Use your fingers to remove the rotary seal face (item 5.7) mounted in the impeller (item 4).
8. Remove the O-ring (item 5.5) from the rotary seal face.
9. Clean the stator and rotary seal face locations, if necessary with air or water.
9a. In the case of water-flushed/aseptic shaft seals, the back plate must be removed to dismantle the rear shaft seal. The rear seal stationary seal face (item 5.6) is mounted in the pressure ring (item 5.11) and the rotary seal face (item 5.7) is mounted on the shaft (item 11). These are removed in the same way as the front seal components.
10. Check O-rings (item 5.5) for signs of cracks, lack of elasticity, brittleness and/or chemical attack. Replace worn or defective parts.
11. Check the stationary seal face (item 5.6) and rotary seal face (item 5.7) for signs of wear too. The wearing surfaces must be completely free of scratches/cracks. If not, the rotary seal face and stationary seal face must both be replaced.
5. Maintenance

11a. In the case of water-flushed shaft seals, check the rear seal rings (item 5.7, 5.6) for wear too, and replace if necessary.

12. Fit new O-rings on the stationary seal face and rotary seal face.
 NB! Remember to moisten these with water.

13. Fit the rotary seal face (item 5.7) on the impeller without using tools.
 NB! The "notch" in the rotary seal face must be located so that it mates with the driving pin (item 5.8) in the impeller hub.

13a. In the case of water-flushed/aseptic seals, also fit a rotary seal face (item 5.7) with its O-ring (item 5.5) in the location on the shaft, again without using tools.

14. Fit the stationary seal face (item 5.6) in the back plate without using tools.
 NB! The "notches" in the stationary seal face must mate with the driving dogs on the carrier in the back plate. Check that the stationary seal face is positioned so that it slides backwards and forwards easily in the back plate.

14a. In the case of water-flushed/aseptic seals, remove the drainage baffle (item 5.4) from the stationary seal faces for both the front and rear seal before fitting them in the seal cover (item 5.9) and back plate (item 7) respectively.

15. After fitting, clean the wearing surfaces.

15a. For liquid-flushed/aseptic seals, remount the back plate (item 7).

16. Fit the impeller (item 4). Remember to use the proper tightening torque:
 M14: 70 Nm (52 lbf ft)
 M20: 200 Nm (148 lbf ft)

17. Check that the locating pin (item 8), where fitted, in the top of the back plate mates with the half hole in the pump body and carefully, to avoid damaging the O-ring, press the pump body (item 1) in over the O-ring (item 6) and fasten with the screws (item 9), observing the correct tightening torque.

 Tightening torque:
 M12: 100 Nm (74 lbf ft)
 M16: 250 Nm (185 lbf ft)

5.3 Lubricating the motor
The motor is a special motor with double row angular contact ball bearings for absorbing the very powerful axial forces that may arise in WHP+ pumps. The motors are fitted with grease nipples and require regular lubrication. The lubricating interval and the quantities required are listed on page 49 and on a plate fitted to the motor.
5. Maintenance

Lubricants:
When re-greasing, only a special bearing grease must be used. It has the following specifications:
- lithium-based or lithium complex grease of good quality
- the viscosity of the base oil must be 100-140 cST at 40°C.
- consistency NLGI 2 or 3.
- working temperature range: -30°C - +120°C continuously.

Grease with the correct properties is available from all the major lubricant manufacturers.

If the lubrication intervals are short due to bearing temperatures of 80°C or above, high temperature grease must be used. This normally makes it possible to run with bearing temperatures that are approx. 15°C higher.

The motor shroud must be removed to expose the grease nipples and to allow lubrication.

5.4 Replacing the motor or motor bearings
If the motor is to be replaced, the new motor must have double row angular contact ball bearings. We recommend using original ABB motors. Please consult the spare parts list on page 61. The bearings should be changed when they become noisy.
Bearing type: see spare parts list.

Follow the procedure described below when replacing a motor or motor bearing.
The assembly drawing is to be used for reference (page 2).

1. Disconnect the pump from the power supply.
3. Remove the impeller.
4. Remove the motor shroud and, if possible, stand the pump on the motor’s fan cover. See Fig. 10.
5. Undo the four motor flange bolts between the motor and extension frame and remove them. See Fig. 10.
6. Lift the back plate, extension frame and spacer flange (where fitted), which are still bolted together, up and off the shaft. See Fig. 10.
7. See Fig. 11. Loosen the screws in the shaft muff, pull the shaft off and replace the motor.
8. See Fig. 12. Before remounting the pump shaft, remove any dirt and grease from the motor shaft and the muff’s internal clamping surfaces. Mount the pump shaft loosely. Position the balance hole above the keyway.
9. Fit the back plate and extension frame over the shaft.
10. Tighten the bolts.
11. Stand the pump back on its legs/bracket.
5. Maintenance

12. Fit the impeller (item 4).

Remember to use the proper tightening torque:
M14: 70 Nm (52 lbf ft)
M20: 200 Nm (148 lbf ft)

13. See Fig. 13. Lay the plastic star against the impeller.

14. Fit the pump body (item 1) with the screws (item 9).

15. See Fig. 14. Push the shaft (item 11) forward until the impeller (pos 4) is touching the plastic star.

16. Tighten the shaft screws to 30 Nm for 8 mm screws and 55 Nm for 10 mm screws.

17. Remove the star by pulling it out through the inlet.

5.5 Recommended stocks of spare parts

Seal set
We recommend that you keep both seal kits and service kits for the WHP+ pumps in stock. The seal kit for the WHP+ pump consists of the wearing parts of the pump, as specified on page 38 - 39.

Service kit
The service kit is made up of a number of the main components of the pump which are not wearing parts, but which you still may have to replace: shaft, impeller, cap nut and fixing kit.

The table below shows the recommended stocks of spare parts for normal operation and in cases where there are special needs - for example 24-hour operation, operation with abrasive media, or processes that are sensitive to even the shortest production stoppage.

Wearing parts (seal kit, see page 38 - 39)

<table>
<thead>
<tr>
<th>No. of pumps in service</th>
<th>Normal operation</th>
<th>Special needs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sets</td>
<td>Sets</td>
<td>Sets/10 pumps</td>
</tr>
<tr>
<td>0-5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5-20</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>> 20</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Service parts (shaft, impeller, cap nut page 35, fixing kit page 37)

<table>
<thead>
<tr>
<th>No. of pumps in service</th>
<th>Normal operation</th>
<th>Special needs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sets</td>
<td>Sets</td>
<td>Sets/10 pumps</td>
</tr>
<tr>
<td>0-5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5-20</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>> 20</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
6. Technical data

6.1 Sound pressure and sound effect level for WHP+ Pumps
Measurements have been carried out in accordance with ISO 3743, Grade 2, and ISO 3746, Grade 3. Tolerance: ±3 dB.

LpA in dB refers to the sound pressure level at a distance of one metre from the surface of the pump at a height of 1.6 m above floor level (cf. EC Directive (89/392/EEC) 1.7.4.).

Lwa states the sound power level.

Operating conditions A, B and C are defined as follows:
A. Nominal flow and operating pressure
B. Nominal flow and 60% operating pressure
C. 60% flow and operating pressure

The nominal flow and max. operating pressure in the case of the WHP+ 55/60, for example, are 60m³/hr at an operating pressure of 55WG, and so on.

This information only applies if the motor used is an ABB aluminium motor and the size of the motor matches the power requirement of the pump.

The noise level may increase considerably, if reducers (reduction/expanding fittings) are mounted on the inlet/outlet.

The values shown apply when the pumps run at 2900 rpm and have a shroud over the motor.

If the pumps are run at 1450 rpm, the values are reduced by about 20 dB.

<table>
<thead>
<tr>
<th>Operating conditions</th>
<th>LpA</th>
<th></th>
<th>Lwa</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>WHP+30/80</td>
<td>75</td>
<td>73</td>
<td>68</td>
<td>89</td>
</tr>
<tr>
<td>WHP+55/60</td>
<td>74</td>
<td>70</td>
<td>68</td>
<td>88</td>
</tr>
<tr>
<td>WHP+60/110</td>
<td>76</td>
<td>74</td>
<td>72</td>
<td>87</td>
</tr>
</tbody>
</table>

6.2 Maximum permissible outlet pressure for WHP+ Pumps
The maximum pump outlet pressures specified below must not be exceeded (applies to water at 20°C).

Max 60 bar: WHP+ 30/80, WHP+ 55/60, WHP+ 60/110

6.3 Tightening torque for impellers and shafts
The tightening torque settings required for the screws in the shaft are:
M8: 30 Nm (22 lbf ft)
M10: 55Nm (41 lbf ft)

The tightening torque settings required for the cap nuts are:
M14: 70 Nm (52 lbf ft)
M20: 200 Nm (148 lbf ft)

6.4 Tightening torque for pump housing and extension frame
M12: 100 Nm (74 lbs/N)
M16: 250 Nm (186 lbs/N)

Subject to changes.